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Abstract

Aircraft with stores can exhibit aeroelastic limit-cycle oscillation in the tran-

sonic regime. Limit-cycle oscillation is an aeroelastic phenomenon characterized by

limited amplitude, self-sustaining oscillations produced by fluid-structure interac-

tions. In order to study this phenomenon for practical configurations, a first-order

accurate code was developed to interface a modal structural model with a com-

mercial, parallel, Euler/Navier-Stokes fluid solver with a deforming grid capability.

Initial testing of this code was completed on the Goland+ and AGARD 445.6 wings.

Limit-cycle oscillation was simulated for the Goland+ rectangular wing and was

successfully compared to previously reported findings. It was found that the aero-

dynamic nonlinearity responsible for limit-cycle oscillation in the Goland+ wing was

the periodic appearance/disappearance of shocks. The Goland+ structural model

was such that in the transonic flutter dip region, the primary bending and twisting

modes were in phase and coupled to produce a single-degree-of-freedom, torsional

flutter mode about a point located ahead of the leading edge of the wing. It was

determined that the combination of strong trailing-edge and lambda shocks which

periodically appear/disappear, limited the energy flow into the structure. This mech-

anism quenched the growth of the flutter, resulting in a steady limit-cycle oscillation.

Under-wing and tip stores were added to the Goland+ wing to determine how

they affected limit-cycle oscillation. It was found that aerodynamic store shapes

affect limit-cycle oscillation in two offsetting ways: by interfering with the flow field

on the wing surface, and by transferring additional store forces into the structure.

The under-wing stores interfere with the airflow on the lower surface of the wing

which decreases limit-cycle oscillation amplitudes, whereas, under-wing and tip store

forces transferred into the wing structure directly increase limit-cycle oscillation am-

plitudes.
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DYNAMIC AEROELASTIC ANALYSIS OF WING/STORE

CONFIGURATIONS

I. Introduction

Aeroelasticity is the interaction between an elastic structure in an air stream and

the resulting aerodynamic force [29]. The performance of aircraft is often limited by

adverse aeroelastic interactions such as flutter. Flutter is defined as: “A dynamic

instability of a flight vehicle associated with the interaction of aerodynamic, elastic,

and inertial forces” [29]. Classical flutter is characterized by catastrophic diverging

oscillations [15].

Aircraft operating in the transonic region risk encountering limit-cycle oscilla-

tion (LCO) which is also called limit-cycle flutter and limited amplitude flutter [8].

Limit-cycle oscillations are limited amplitude, self-sustaining oscillations produced

by fluid-structure interactions. LCO results in undesirable airframe vibrations that

adversely affect a pilot’s ability to function and degrades targeting accuracy for

fighter aircraft. Aircraft with high aspect ratio or highly swept wings can experience

LCO [41]. For typical LCO, the amplitude is constant for a given flight speed. The

amplitude increases when the flight speed is increased and a new constant amplitude

is obtained when the flight speed is again fixed [8]. If the flight speed is decreased

but is still above the flutter point, a new constant, lower amplitude is obtained. If

the flight speed is decreased below the flutter point, the oscillations damp out. For

nontypical LCO, the amplitude does not increase as the flight speed increases [8].

LCO is related to flutter, which occurs when the dynamic pressure is increased

to a critical value above which the system becomes dynamically unstable. When a

non-linear mechanism that counters the amplitude growth is present in this unstable
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region, LCO can result. The nonlinearity that sustains LCO can be in the struc-

ture, the aerodynamic flow, or in both. The case of interest for this study was the

nonlinearity in the aerodynamic flow. Sources of aerodynamic nonlinearity include

separated flow and shock motion in transonic flow [17].

Advances in nonlinear modelling and computer hardware have led to nonlin-

ear aeroelastic predictions for reasonably complex configurations [22, 23, 24, 42, 44].

However, there is continued interest in LCO motivated by the need to further under-

stand the physics and mechanisms involved in LCO so that better LCO predictive

tools can be developed [12, 15, 52]. This research examines the aerodynamic nonlin-

earities for a clean wing and the non-linear aerodynamic effects induced by under-

wing stores. There have been several efforts where LCO driven by aerodynamic

nonlinearities were studied [35, 42, 44]. This research adds to this knowledge base

by providing a detailed analysis of the shock motion during LCO and by determining

the role of store aerodynamics in LCO.

Tijdeman and Seebass [56] characterized the periodic motion of shock waves on

oscillating airfoils into three different types. In type-A shock motion, the shock wave

moves fore and aft sinusoidally. The shock strength may vary as the shock moves,

but the shock is always present [56]. In type-B shock motion, the shock moves

sinusoidally as in type-A, but the shock disappears during a part of its backward

motion [56]. Type-C shock motion occurs when a periodic shock wave leaves the

airfoil and continues upstream as a weak, free shock-wave [56]. Bendiksen [5] has

shown that if a transonic flutter mode that appears to be a single-degree-of-freedom,

torsional motion, ahead of the leading edge, has a phase angle between bending and

torsion less than approximately 10 degrees, and has a transition from a type-A to

type-B shock motion, it is likely that LCO will result. This type-B shock motion

limits the flow of energy from the fluid to the structure, resulting in LCO [5].

Under-wing and tip stores can affect LCO by changing the inertial properties

of the wing, and by changing the aerodynamics of the wing. If a store mass is
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added forward of the elastic axis (EA), the flutter speed generally increases, which

produces a stabilizing effect [32]. If a store mass is added aft of the elastic axis, it

has a destabilizing effect [32]. Exceptions to this can occur in the transonic flutter

dip region [6, 7]. Therefore, if there is typical LCO at a given airspeed and a mass is

added ahead of the elastic axis, and it raises the flutter speed, the LCO amplitude

will decrease because the given fixed airspeed becomes closer to the flutter speed.

If the mass is moved aft of the elastic axis and it lowers the flutter speed, the LCO

amplitudes will increase.

The role of store aerodynamics in LCO is less well understood. One can hy-

pothesize two primary mechanisms by which store aerodynamics affect LCO: the

stores could change or interfere with the airflow on the wing, thereby changing how

the shock motion is limiting the energy transferred into the structure; and the store

aerodynamic carriage loads that are transferred into the structure could sufficiently

change the total forces experienced by the wing, thereby changing the LCO response.

The first mechanism deals with changes to the wing aerodynamics because of the

presence of the store. The second mechanism is independent of any changes to the

wing aerodynamics and any changes in the LCO are because of aerodynamic forces

experienced by the store. The most likely method that store aerodynamics affect

LCO is through a combination of these two.

1.1 Overview of Computational Aeroelasticity

Several computational methods have been used to model fluid-structure inter-

actions such as flutter and LCO. The simplest and fastest method is to use a finite

element formulation for the structure and a linear aerodynamic model such as the

doublet-lattice method for the fluid [31]. Finite element models are very fast and

accurately predict instability frequencies, therefore, they are often used as a first

step in aeroelastic analysis [6, 7, 12, 13, 15, 51]. However, in the transonic region

where the aerodynamic flow is non-linear, these methods do not accurately predict
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flutter onset velocity [12]. Accuracy can be improved when using a finite element

formulation for the structure by employing an unsteady-aerodynamics computation

procedure such as an aerodynamic-influence-coefficient matrix. This procedure cal-

culates the unsteady aerodynamics once and stores the results in tables that are

reused for repetitive aeroelastic computations [10].

Greater accuracy can be obtained by using a more complex aerodynamic

model. A computationally efficient aerodynamic model that is frequently used

solves the three-dimensional transonic small disturbance potential flow equations.

This method has been used in research codes [34] and in the NASA Langley de-

veloped CAPTSDv [3, 6, 7, 14, 31, 51]. Mildly separated flows have been studied

with CAPTSDv with the addition of an inverse integral boundary layer model [31].

These models are more accurate than linear aerodynamic models but they do not

completely capture the intricacy of the flow due to shock-boundary layer interaction

or large angles of attack.

The latest aeroelastic codes solve the Euler equations for inviscid flows or the

Navier-Stokes equations for viscous flows for even greater accuracy, but at a cost of

greater computational time. The most widely available of these codes are ENS3DAE

and CFL3DAE. ENS3DAE was developed by the Lockheed-Georgia Company. It

uses a central finite-difference scheme and structured grids. It has been used to solve

a large number of aeroelastic problems [6, 7, 31, 51]. CFL3DAE was developed by

NASA Langley. It uses an upwind finite-volume scheme and structured grids. It has

also been used to solve a large number of aeroelastic problems [3, 6, 7, 31, 51]. In

addition to these widely distributed codes, the majority of the latest research codes

use a finite-volume scheme to solve the Euler/Navier-Stokes equations. Most of these

codes are based on structured grids [26, 27, 37, 42, 43, 44, 45, 46, 53] while a few

recent codes use unstructured grids [20, 21, 22, 23, 33, 35, 47, 48].

In an effort to attain the greater accuracy obtained from using Euler/Navier-

Stokes solvers, without the computational expense, there is significant research in
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the area of reduced order modelling (ROM). In these methods, the dominant spatial

modes of the flow field are determined and used to represent the flow [16]. The most

common ROM techniques include harmonic balance [54, 55] and proper orthogonal

decomposition [16]. ROM can reduce the computational expense by several orders of

magnitude but care must be taken that the flow field is not over simplified, thereby,

excluding or changing the nonlinearity being studied.

Computational methods have successfully been used to predict the flutter point

of several aircraft wings. The most common case studied [9, 27, 33, 34, 35, 37, 38,

40, 45, 47, 48, 49] is the AGARD 445.6 weakened wing, which has been presented

as a standard aeroelastic test case [57]. Experimental flutter data for this wing is

available at several points between Mach 0.499 and Mach 1.141 [57]. This test case

has often been used to validate aeroelastic programs. With various computational

aeroelasticity methods, good agreement with experimental data was achieved for

subsonic results but all the computational methods tend to over predict the flutter

point for supersonic results [9, 27, 33, 34, 35, 37, 38, 40, 45, 49]. It has been found

that inclusion of turbulence and viscous effects slightly improved the flutter point

predictions of the AGARD 445.6 wing [27].

Computational methods have also been successfully used to predict the flutter

point of fighter wings. Computational results compared well with flight test results

for an F-16 in clean configuration [22, 23, 43] and with stores [10]. It has been noted

that the level acceleration achievable by an F-16 does not significantly impact its

aeroelastic parameters. However, increasing the wing loading by increasing the angle-

of-attack increased the aeroelastic torsional frequency. For a generic delta fighter

wing with stores, it has been found that adding or changing the store in the structure

affected the flutter point, however store aerodynamics only affected the supersonic

flutter point, not the subsonic [34, 53]. It has also been found that computational

aeroelasticity methods which take into account aerodynamic nonlinearities produce
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a much more conservative flutter boundary than linear theory in high transonic

flow [33, 35].

All of the previously listed computational aeroelasticity methods have been

used to study wings with linear structural models that exhibit transonic limit-cycle

oscillations. For the Goland+ rectangular wing with a tip store [6, 7, 51], researchers

found that LCOs occurred at speeds less than that predicted using linear analysis

and at speeds lower than that computed for a clean wing. They also found that

modelling the aerodynamics of the tip store did not affect the LCO. Each of the

computational methods they tested showed LCO responses over the Mach range

0.91 through 0.94 but with different onset velocities [6]. The computed frequencies

were qualitatively similar but did not agree in magnitude as well as expected [6].

Attempts have been made to model LCO in the F-16 in both a clean con-

figuration and with stores. Melville discovered a limit-cycle oscillation case for an

F-16 without stores at 10 degrees angle-of-attack [42, 44]. He determined that the

shock-induced, trailing-edge separation was a critical nonlinear limiting mechanism

responsible for LCO. Denegri has identified F-16 store configurations that lead to

LCO during flight test [13, 15]. These configurations have been used to computa-

tionally model LCO with mixed results [14, 47, 48, 54, 55]. The computed LCO

amplitudes have not successfully duplicated those seen in flight test. Research on

this configuration is continuing in order to determine what fidelity of computational

model is required to correctly simulate this LCO.

1.2 Scope of Research

The objective of this research is to determine how nonlinear aerodynamics

quench the energy flow from the fluid into the structure resulting in LCO. It is known

that shock motion is the nonlinearity responsible for LCO in the Goland+ wing, but

it is not understood how this shock motion quenches the flutter growth resulting

in LCO. It is also known that adding under-wing stores to the structure affects the
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flutter onset speed. However, it is not understood how the store aerodynamics affect

the LCO response nor is it understood how they affect the quenching mechanism

responsible for LCO. The scope of this research is defined by the following thesis

statement and research approach.

1.2.1 Thesis Statement. The primary bending and torsional modes that are

known to couple in the Goland+ wing, result in periodic shocks that are responsible for

inhibiting divergent flutter by decreasing the restoring forces on the wing, resulting

in a balancing of the inertial forces and a stable limit-cycle oscillation. Further,

store aerodynamics do not cause limit-cycle oscillation but can decrease or increase

the amplitude of the limit-cycle oscillation depending on the size and location of the

store.

1.2.2 Research Approach. In order to address the thesis statement, a com-

putational aeroelasticity code was developed around a commercial computational

fluid dynamics (CFD) code and a linear modal structural model. It was required

that the CFD code have the capability to interact with user written programs. This

interaction allowed a structural model to be linked to the CFD code. The CFD code

also had to incorporate a deforming mesh capability in order to simulate the flow

around a moving wing. Finally, the CFD code had to use unstructured grid method-

ology. Unstructured grids were required in order to speed up the grid generation

time since multiple configurations were studied. In addition to these requirements,

it was desired that the CFD code solve the Navier-Stokes equations and have multi-

ple turbulent models for greater accuracy. FLUENT 6.1 by FLUENT Incorporated

was chosen because it met these requirements. Once the CFD code was chosen, it

was linked to a modal structural model in order to create an aeroelastic program.

Once the aeroelastic program was developed and validated, it was used to

simulate transonic LCO. External aerodynamic stores with pylons were then added

in order to analyze how the LCO response changed. The stores were not added to
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the structural model, only to the aerodynamic model. Modal response, force and

moment data, velocity vectors, pressure contour maps, Mach contour maps, density

contour maps, power spectral density plots, work on the structure, and wing tip

response were studied in order to quantify how the store aerodynamics affected the

LCO and to determine what aerodynamic nonlinearity was providing the quenching

mechanism responsible for the LCO.

1.3 Document Organization

This document is organized into five chapters. Chapter I introduces the prob-

lem, discusses prior work, states the thesis of the research, and lays out the organi-

zation of the document.

Chapter II provides an overview of FLUENT 6.1. It also describes the aeroe-

lastic program that was written to interact with FLUENT in order that it could be

used as an aeroelastic analysis tool.

Chapter III describes the validation of the aeroelastic program. It covers the

prescribed motion, Goland+ wing, and AGARD 445.6 wing test cases used in vali-

dating this aeroelastic analysis method.

Chapter IV discusses the results obtained using the aeroelastic program. The

chapter is divided into three sections. The first section discusses the Goland+ wing

without aerodynamic stores and analyzes the quenching mechanism responsible for

the LCO. The second section discusses the Goland+ wing with aerodynamic under-

wing stores and their effect on LCO. The last section discusses the Goland+ wing

with an aerodynamic tip store and its effect on LCO.

Chapter V summarizes the conclusions and provides recommendations for fu-

ture research.

In addition to these five chapters, this document contains supporting appen-

dices that provide detailed information in support of the five main chapters.
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II. Aeroelastic Program

2.1 Aeroelastic Analysis Method

One goal of this research effort was to extend the investigation of Dr Beran,

et al. [6, 7, 51] by evaluating the capability of a commercial, parallel, Euler/Navier-

Stokes fluid solver, coupled with a modal-analysis structure model, to accurately

predict aeroelastic behavior such as flutter and LCO. There is not currently available

a dynamic-aeroelastic analysis tool based on a fully unstructured formulation. This

is needed to reduce the grid-generation time in order to investigate LCO for complex

wing/store/pylon configurations. Grid generation for these configurations is difficult

for structured methods and usually requires overset technology [4, 39].

FLUENT 6.1 by FLUENT Incorporated was chosen to fill the need for a com-

mercial solver that could handle geometrically-complex configurations undergoing

structural deformation. FLUENT 6.1 is an unstructured fluid solver with a deform-

ing grid capability that can be controlled through a user-written subroutine called a

user-defined function (UDF). A UDF was written that extracted aerodynamic force

data from the fluid solver and applied it to a modal structure model in order to

deform the grid. By coupling FLUENT with a modal structure model, groundwork

was laid to analyze aeroelastic problems for complex geometries.

2.2 Overview of FLUENT 6.1

FLUENT is a commercially available computer program for modelling fluid

flow and heat transfer in complex geometries. FLUENT solves flow problems using

unstructured meshes that can be generated about complex geometries with relative

ease [2]. FLUENT uses a control-volume-based technique which consists of integrat-

ing the governing equations on a control-volume basis yielding discrete equations [2].

FLUENT has two different fluid solvers: a segregated solver and a coupled solver.

The segregated solver is for low speed or incompressible fluids. For compressible
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fluids, the coupled solver should be used. The coupled solver solves the govern-

ing equations of continuity, momentum, energy, and species transport (if required)

simultaneously. The governing equations can be written in vector form as:

∂

∂t

∫

V

WdV +

∮

(F −G) · dA =

∫

V

HdV (2.1)
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, (2.2)

and H contains source terms such as body forces and energy sources [2].

Because the governing equations are non-linear and coupled, several iterations

must be performed to obtain convergence. Each iteration consists of the following

steps [2]:

1. Fluid properties are updated, based on the current solution. (If the calculation

has just begun, the fluid properties will be set to the initial conditions.)

2. The continuity, momentum, and energy equations are solved simultaneously.

3. Where appropriate, equations for scalars such as turbulence are solved using

the previously updated values of the other variables.

4. A check for convergence is made.

These steps are continued until the convergence criteria is met [2]. When

performing unsteady simulations, FLUENT uses an implicit-time formulation (dual-

time stepping) which treats each physical time step of the unsteady problem as
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a steady state problem, which is run to convergence. The solver can be run with

first or second-order temporal accuracy, however, the deforming mesh algorithms are

only supported by the first-order time-accurate solver. The coupled solver employs

a first or second-order, spatially-accurate, upwind method to solve the governing

equations [2].

FLUENT includes three mesh-motion methods that can be used to update

the volume mesh in the deforming regions of the grid based on motion defined at

the boundaries: spring-based smoothing, dynamic layering, and local remeshing [2].

In the spring-based smoothing method, the edges between any two mesh nodes are

idealized as a network of interconnected springs. The initial configuration of the

edges before any boundary motion constitutes the equilibrium state of the mesh [2].

A displacement at a given boundary node will generate a force proportional to the

displacement along all the springs connected to the node. The second method,

dynamic layering, can be used in prismatic-mesh zones to add or remove layers of cells

adjacent to a moving boundary [2]. The third method is remeshing. When the spring-

based smoothing method is used, the boundary displacement may become large

compared to the local cell sizes. This can cause the cell quality to deteriorate or the

cells to become degenerate [2]. This can result in negative cell volumes or convergence

problems when the solution is updated to the next time step. To circumvent this

problem, FLUENT agglomerates cells that violate user-specified skewness or size

criteria and locally remeshes the agglomerated cells [2]. If the new cells satisfy the

skewness and the size criteria, the mesh is locally updated with the new cells [2].

FLUENT provides several turbulent models for modelling turbulent flows, in-

cluding the Spalart-Allmaras model, standard k − ε model, renormalization-group

(RNG) k−ε model, realizable k−ε model, standard k−ω model, shear-stress trans-

port (SST) k − ω model, Reynolds stress model (RSM), and large-eddy simulation

(LES) model [2].
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Figure 2.1 Aeroelastic Program Flowchart

2.3 Overview of Aeroelastic Program

The aeroelastic program developed around FLUENT is depicted in Figure

2.1. FLUENT solves the Euler/Navier-Stokes equations (equations 2.1 and 2.2)

and calculates flow variables such as velocity, pressure, density, temperature, etc.,

for each cell in the flowfield. It also deforms the mesh based on new wing-node

coordinates when they are provided. The remainder of the aeroelastic program is a

UDF (written in C) that is called by FLUENT. In addition to the aerodynamic and

structural grids, the aeroelastic program has five main inputs: two spline matrices,

a mode shape matrix, a mass matrix, and a stiffness matrix. The mode shape

matrix, the mass matrix, and the stiffness matrix are determined during modal
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analysis preprocessing using software such as MSC/NASTRAN. The output from

preprocessing is then reformatted for input into the aeroelastic program.

In general, the grid used by the structural model and the aerodynamic grid

used by FLUENT are non-point matching. A spline matrix [S] is used to interpolate

displacement data from the structural grid [δs] to the aerodynamic grid [δa] using

the equation

[δa] = [S][δs]. (2.3)

It is also used to interpolate force data from the aerodynamic grid [Fa] to the struc-

tural grid [Fs] using the equation

[Fs] = [S]T [Fa]. (2.4)

Because FLUENT provides aerodynamic forces at cell centers rather than at

grid nodes, the coupling between the fluid and structural models is accomplished with

two splines. The first spline matrix (S1) is created to spline displacements between

the structural grid points and the aerodynamic grid points. FLUENT calculates

pressures at the cell centers. These pressures are then extrapolated to the face cen-

troids on the wing and used with the wall-face area vectors to calculate the pressure

forces. These pressure forces are then combined with the viscous shear forces to get

the total forces. Since the total forces are at the face centroids and not at the aero-

dynamic grid points, a second spline matrix (S2), is created to spline between the

structural grid points and the wall-face centroids on the aerodynamic grid. Coordi-

nates for the structural grid nodes, aerodynamic grid nodes, and aerodynamic-grid

wall-face centroids are used during preprocessing to create these two spline matrices.

The two spline techniques chosen for this application were the thin-plate spline [1,

18, 50] and the infinite-plate spline [1, 28, 50]. Details of the spline algorithms are

presented in Appendix A. Both the thin-plate and infinite-plate spline are based on
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the undeformed node coordinates of the two computational grids, therefore, they are

computed and stored during pre-processing.

The Newmark algorithm [30], presented in Appendix B, was used to discretize

the structural model. The semi-discrete equations of motion can be written as

[M ]{ü}+ [C]{u̇}+ [K]{u} = {F} (2.5)

where [M ] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,

{F} is the vector of applied forces, and {u}, {u̇}, and {ü} are vectors of modal dis-

placements, modal velocities, and modal accelerations, respectively [30]. Assuming

a linear acceleration and no structural damping, the Newmark algorithm is used to

solve equation 2.5 for {u}n+1 with the following set of equations:

(

[M ] +
∆t2

6
[K]

)

{ü}n+1 = {F}n+1 − [K]

(

{u}n +∆t{u̇}n +
∆t2

3
{ü}n

)

, (2.6)

{u̇}n+1 = {u̇}n +
∆t

2
(({ü}n + {ü}n+1) , (2.7)

and

{u}n+1 = {u}n +∆t{u̇}n +
∆t2

6
(2{ü}n + {ü}n+1) . (2.8)

FLUENT uses an implicit, dual-time stepping formulation for unsteady flow

simulations. Because of this dual-time stepping formulation, and the lack of a pro-

vision to extract wall-force values and a fractional, physical, time-step size during

the sub-iterations, the fluid solver and structural model can only be coupled at the

end of each physical time-step. Therefore, the structure always lags the fluid solver

by one time-step.

The aeroelastic program moves an attached store as a rigid body based on

how the pylon attachment points move on the wing surface. The aerodynamic forces

and moments acting on the store are calculated and transferred into the structure
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through the pylon, in order that any aerodynamic effects on the store are felt by

the structural model. These forces can also be turned off or ignored, allowing the

aerodynamic interference on the bottom of the wing due to the store to be isolated.

In order to determine how much of an effect the store forces are having on LCO as

compared with how much of an effect the store interference with the wing is having on

LCO, the aeroelastic program can also magnify the store forces that are transferred

into the structure. In addition, these magnified forces can be reversed in direction in

order to further isolate their effect. The aeroelastic analysis program also allows for

inertial forces to be added to the store aerodynamic forces. To add inertial forces, a

mass and mass location are entered into the aeroelastic program. The acceleration

vector of the mass is calculated from the store motion. This acceleration vector is

multiplied by the mass to obtain an inertial force vector which is converted to forces

and moments at the store attachment location. These forces are then transferred

into the original structural model.

A typical aeroelastic analysis is started by computing an initial, steady-state

solution for the undeformed wing. This solution is used as the starting point for the

unsteady, deforming-grid computations. At the start of the unsteady run, the forces

at the wall-face centroids on the wing are calculated. These forces are then splined

using equation 2.4 to the structural-grid nodes. New deformed structural-grid co-

ordinates are then calculated using the Newmark method. These new structural

displacements are then splined using equation 2.3 to get new aerodynamic-grid coor-

dinates. FLUENT then deforms the mesh based on the new coordinates, increments

the time-step, and calculates new flow variables. This process repeats until a speci-

fied flow time is reached.

The aeroelastic program is fully parallelized to take advantage of using mul-

tiple processors. The fluid solver is second-order accurate spatially, and first-order

accurate temporally (when using the deforming mesh algorithms). The structural

model is second-order accurate, both spatially and temporally.
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III. Validation of Aeroelastic Program

The aeroelastic program described in chapter II was implemented as FLUENT user-

defined functions in the C programming language. The components of the aeroe-

lastic program (splines, structural model, etc.) were tested individually to verify

correctness. The thin-plate spline was then tested to obtain an estimate of the error

induced in the system when transferring data from one grid to the other. The full

aeroelastic program was then tested in two stages, first with prescribed structural

motion, then through full aeroelastic structural motion using two different 3-D wing

configurations: the AGARD 445.6 wing, flutter case, and the Goland+ wing, LCO

case.

The aerodynamic forces were calculated by the fluid solver for the aerodynamic

grid. These forces were then transferred to the structural grid through the use of a

spline matrix. Any errors introduced in the force distribution, by the spline matrix,

would result in an inaccurate deformation of the wing. In order to quantify the

errors induced when transferring forces from the aerodynamic grid to the structural

grid, the thin-plate spline was tested first with a model problem and then with

the Goland+ LCO case. The model problem was a flat plate. The “aerodynamic”

grid was created by evenly dividing the top and bottom surfaces of the plate into

six by four cells with a node at the center of each cell. The “structural” grid was

created by evenly dividing the top and bottom surfaces of the plate into three by

two cells with a node at the center of each cell. A distributed force was then applied

to the plate and the exact force at each node was calculated for both grids. The

calculated force on the aerodynamic grid was then splined to the structural grid and

these values were compared with the exact values that were calculated. Errors at

each structural node varied between 3% and 16%. However, when the forces on the

aerodynamic grid and splined structural grid were summed, the total forces were the

same. When moments about a point were calculated for both the aerodynamic grid
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and the splined structural grid and then summed, the total moments were the same

for both grids. The model problem showed that the spline conserves the total forces

and moments on a global level, but that errors exist on a cell-by-cell basis.

To characterize the error for a more realistic geometry, the total forces and

total moments for both the aerodynamic and structural grids were calculated for

the Goland+ Wing (discussed in section 3.2.2) at each time-step during an LCO

simulation run. The average error was 0.0003% except for the total moment about

the y-axis which had an average error of 0.0078%. The total work was also calculated

for each grid. Work was calculated by taking the dot product of the change in force

at each node, and the displacement of each node. The results were summed to

provide a total work. The work was compared at each time-step for both grids. The

difference between the total work calculated on the structural grid, and the total

work calculated on the aerodynamic grid varied from −0.1 to 0.17 N · m with an

average of 0.0004 N ·m (Figure 3.1), or 0.0017%. Overall, there is a very small error

in the total moment about the y-axis and in the work induced by the thin-plate

spline using these grids for this problem.

3.1 Prescribed Structural Motion Test Case

The Goland+ wing, described in section 3.2.2, was sinusoidally pitched ±0.5◦ at

3 Hz. Coefficients of lift and moment were plotted and compared to Beran et al. [6, 7].

The grid consisted of 678,657 tetrahedral cells. Beran et al. [6] used non-match-point

flow conditions. FLUENT requires match-point flow conditions. Therefore it was

necessary to change the freestream temperature and pressure conditions in order to

match a given Mach number, freestream velocity, and freestream density. The Mach

number was set at 0.92, the freestream velocity was set to 400 ft/sec (121.92 m/s),

and the freestream density was set to 0.0023771 slugs/ft3 (1.225 kg/m3). For γ =

1.4 and R = 1716.16
ftlbf

slug◦R
(R = 287.05 Nm

KgK
), this gave a freestream temperature of

78.5245◦R (43.6247 K) and a freestream pressure of 320.9412 lb/ft2 (15, 366.746 Pa).
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As shown when plotting the coefficient of moment (CM) versus the coefficient

of lift (CL) (Figure 3.2), the results from FLUENT compare well to ENS3DAE and

CAPTSDv. There was a slight asymmetry in the FLUENT-based results attributed

to grid asymmetries introduced as the mesh was deformed. Overall, the results

indicated that the aeroelastic program produced similar results to other software

used for aeroelastic analysis.

A test was performed to determine the computational impact of moving the

grid. The amount of time needed per iteration was compared for a steady state

calculation versus an unsteady calculation that called the moving grid routine every

iteration. All the force and structural model calculations were performed, but the

grid coordinates were not changed so the flow for both solutions was identical. The

test was performed on two, four, eight, and sixteen Athlon MP 2600+ processors

with 2 GB RAM and a Myrinet network. As shown in Figure 3.3, the aeroelastic
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code with deforming grid capability had degraded computational efficiency when

more than eight processors were used.

3.2 Aeroelastic Structural Motion Test Cases

3.2.1 AGARD 445.6 Wing. The first 3-D wing to be studied with the full

aeroelastic program was the AGARD 445.6 weakened-wing model [57]. This wind

tunnel model has been presented as a standard aeroelastic case [57]. Experimental

flutter data is available for this wing at several points [57] between Mach 0.499 and

Mach 1.141. This test case has often been used to validate aeroelastic programs [27,

38, 40].

This wing consists of a NACA 65A004 airfoil in the streamwise direction with

a panel aspect ratio of 1.6525 and a panel taper ratio of 0.6576. The span is 2.5 ft

(0.762 m), the root chord is 1.833 ft (0.5587 m), and the tip chord is 1.208 ft (0.3682

m). The quarter chord line is swept 45 degrees (Figure 3.4).
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Figure 3.4 AGARD 445.6 Planform
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Figure 3.5 AGARD 445.6 Aerodynamic Grid

An ASTROS model, developed by Kolonay [36], was obtained from Gord-

nier [27] and used in this test. This structural model produced the first fourteen

natural vibration modes for the AGARD 445.6 wing.

An unstructured aerodynamic grid consisting of 177,778 tetrahedral cells (Fig-

ure 3.5) was created using Gridgen. A calculation of the flutter point was then

made using the aeroelastic program. A dynamic pressure was chosen (table 3.1) and

the solution was computed for four oscillations. If the oscillations were growing, a

lower dynamic pressure was chosen and the solution recomputed. If the oscillations

were damped, a higher dynamic pressure was chosen. This was continued until the

flutter point was bounded and a dynamic pressure was found that produced neutral

oscillations. The point of neutral oscillations was the flutter point.

For this problem, an initial displacement perturbation of 0.01 was given to

mode 1. A time step of 0.0003 was also used. A time-step convergence study showed

that larger time steps caused the oscillations to grow while smaller time steps did

not change the solution. For the AGARD 445.6 wing, computational flutter results

are compared by calculating the ratio of the computational flutter dynamic pressure
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Table 3.1 AGARD 445.6 Test Conditions for Mach 0.96
q/qe Velocity Temperature Pressure

0.8 893 ft/sec (272 m/sec) 360◦R (200 K) 76.02 lb/ft2 (3639.67 Pa)
1.0 998 ft/sec (304 m/sec) 450◦R (250 K) 95.02 lb/ft2 (4549.59 Pa)
1.2 1094 ft/sec (333 m/sec) 540◦R (300 K) 114.02 lb/ft2 (5459.50 Pa)
1.4 1181 ft/sec (360 m/sec) 630◦R (350 K) 133.03 lb/ft2 (6369.49 Pa)

Table 3.2 Flutter Point Results, Mach 0.96

Method q/qe

Gordnier coarse viscous 1.15
Gordnier medium viscous 1.12
Gordnier fine viscous 1.05
Gordnier coarse inviscid 1.02
Gordnier medium inviscid 0.96
Gordnier fine inviscid 0.84
Parker inviscid 0.86

Wind-Tunnel Experiment 1.00
Lee-Rausch et al. 0.89
Vermeersch et al. 1.47

(q) over the experimental dynamic pressure (qe). Using the aeroelastic program, at

Mach 0.96, a flutter point of q/qe = 0.86 and a flutter frequency of 12.65 Hz was

calculated. This compares well with Gordnier’s fine inviscid grid results as shown in

table 3.2 [27].

3.2.2 Goland+ Wing. The second 3-D wing to be studied was the Goland+

wing. The Goland+ is a variant of the heavy Goland wing developed as a transonic

flutter test case by Eastep and Olsen [19]. Based on the original Goland wing [25],

the heavy Goland wing has increased mass to ensure applicability in the transonic

regime. The Goland+ version of the heavy Goland wing was modelled with a box

structure beam to allow a variety of store attachment options [7]. This wing was

selected as a test case because data for ENS3DAE and CAPTSDv exists for this

configuration [6, 7, 51].
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The Goland+ wing is rectangular and cantilevered from an infinite midplane.

The wing semi-span is 20 ft (6.096 m) and the chord (c) is 6 ft (1.8288 m). The

thickness, τ , is 0.04 ft (0.01219 m). The elastic axis is located 2 ft (0.6096 m) from

the leading edge. The airfoil section is constant over the spanwise extent of the wing

and is a symmetric, parabolic-arc airfoil given by

z = ±2τ(1−
x

c
)(

x

c
). (3.1)

As reported by Beran et al. [7] and Snyder et al. [51], the Goland+ wing-box

structure (Figure 3.6) is made up of shear elements representing three spars evenly

spaced 2 ft (0.6096 m) apart, and 11 ribs evenly spaced 2 ft (0.6096 m) apart. Each

rib and spar is 4 in (0.1016 m) high. Each of the 20 cells created by the ribs and spars

are capped with an upper and lower wing skin membrane element. Rods are added

on the top and bottom of each shear element and at every spar/rib intersection.

These 137 rod elements represent 60 spar caps, 44 rib caps, and 33 posts. Every

element is modelled using the fictional material properties shown in table 3.3 [51].

These properties were selected to match the structural dynamic characteristics of

the wing-box model to those of the beam model of the heavy Goland wing [19].

The elements were sized to minimize the differences between the first three natural

frequencies. The resulting element dimensions are shown in table 3.4 [51]. The mass

properties are modelled by placing lumped masses with no rotational inertia at each

grid point [51]. The internal ribs were modelled with lumped masses of 1.9650 slugs

(28.6768 kg) at each leading edge spar, 3.9442 slugs (57.5609 kg) at each center spar,

and 5.3398 slugs (77.9280 kg) at each trailing edge spar. The masses on the root

and tip ribs are half those of the internal ribs. In order to match the LCO results as

presented by Snyder et al. [51], a tip store was added to the structure. The tip store

is 10 ft (3.048 m) long and is modelled as a series of rigid bar elements. The bar is

positioned 6 in (0.1524 m) outboard of the wing tip and extends 3 ft (0.9144 m) in

front of the wing leading edge and 1 ft (0.3048 m) behind the trailing edge. The tip
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Figure 3.6 Goland+ Structural Model

Table 3.3 Goland+ Material Properties

Parameter Value

Young’s Modulus, E 1.4976x109 slugs/ft2 (2.3525x1011 kg/m2)

Shear Modulus, G 5.616x108 slugs/ft2 (8.822x1010 kg/m2)

Structural Density ρs 0.000001 slugs/ft3 (0.0005154 kg/m3)

store has a mass of 22.498 slugs (328.3313 kg) located 1.75 ft (0.5334 m) forward of

the elastic axis and a rotational inertia of 50.3396 slugs-ft2 (68.2509 kg-m2) [51].

Natural vibration modes for the Goland+ wing with a tip mass were obtained

from MSC/NASTRAN [6, 51]. The first six modes were used in the aeroelastic

analysis. These modes are plotted in Figure 3.7, which shows the top of the right

wing with the leading edge to the upper right and the trailing edge to the lower left.

The aeroelastic code was tested on a coarse, unstructured, tetrahedral grid

made up of 68,949 cells with 518 cell faces on the wing itself. This grid was pur-

posefully created very coarse in order to decrease the run times for initial testing

of the aeroelastic program. The program was run at multiple Mach numbers and

velocities in order to calculate the flutter stability boundary. The Goland+ simu-
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Table 3.4 Goland+ Element Dimensions
Elements Dimensions

Upper and lower wing skin thickness 0.0155ft (4.7244x10−3m)

Leading and trailing edge spar thickness 0.0006ft (1.8288x10−4m)

Center spar thickness 0.0889ft (2.7097x10−2m)

Rib thickness 0.0347ft (1.0577x10−2m)

Post area 0.0008ft2 (7.4322x10−5m2)

Leading and trailing edge spar cap area 0.0416ft2 (3.8648x10−3m2)

Center spar cap area 0.1496ft2 (1.3898x10−2m2)

Rib cap area 0.0422ft2 (3.9205x10−3m2)

(a) Mode 1 (1.69
Hz)

(b) Mode 2 (3.05
Hz)

(c) Mode 3 (9.17 Hz)

(d) Mode 4 (10.8
Hz)

(e) Mode 5 (16.3 Hz) (f) Mode 6 (22.8 Hz)

Figure 3.7 Mode Shapes for Goland+ Wing with Tip Store
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Figure 3.8 Goland+ Stability Boundary

lations were started by giving mode 2 a modal displacement perturbation of 0.02.

These results were then compared to the results presented by Snyder, et al. [51].

Snyder, et al. [51] used non-match-point flow conditions for their analysis. For each

test case, they chose a Mach number and velocity, and fixed the far-field density and

temperature values at standard-day, sea-level conditions. In order to match their

flow parameters in FLUENT, the specific gas constant R and the far-field pressure

were varied for different Mach number and velocity settings. The specific heat ratio,

γ, was held fixed at 1.4. The computed stability boundary is shown in Figure 3.8.

For an extremely coarse grid, it compares well with the results presented by Snyder,

et al. [51].

At 600 ft/sec (182.88 m/sec) and Mach 0.92, the dynamic pressure is beyond

the flutter point and was shown by Snyder, et al. [51] to result in LCO. At these

conditions and with a time step of 0.001 seconds, the aeroelastic program did produce

LCO with a frequency of 3.37 Hz. A time-step convergence study showed that larger
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time steps caused the oscillations to damp while smaller time steps did not affect the

solution. It took 3 hours and 17 minutes to produce one second of data using eight

2.2 GHz opteron processors. Mode 1 and mode 2 amplitude time histories as well

as CL time history are shown in Figure 3.9. These tests showed that the aeroelastic

program was capable of modelling LCO.

3.3 Validation Summary

An aeroelastic program based on a fully unstructured-grid formulation capable

of simulating flutter and LCO was successfully developed by integrating a modal

structural model with FLUENT 6.1. The individual parts of the aeroelastic code

such as the splines and structural model were validated to ensure they produced the
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correct results. The transfer of forces from the aerodynamic grid to the structural

grid was critical for the accurate calculation of wing deformations. The thin-plate

spline was therefore tested for both a flat plate and with the Goland+ wing to obtain

an estimate of the errors induced by the spline. It was found that there was an error

induced but on average it was less than 0.0078%.

Prescribed motion results showed that the aeroelastic program produced lift

and moment results similar to those produced by other aeroelastic analysis codes.

Validation testing with the AGARD 445.6 flutter test case showed that the aeroelas-

tic program performed well predicting flutter onset velocity and frequency. Finally,

initial testing of the Goland+ LCO test case showed that the program correctly

predicted LCO behavior.

3-13



IV. Analysis of Goland+ LCO

4.1 Computational Experiment Setup

The aeroelastic program was used to analyze the LCO of the Goland+ wing

described in section 3.2.2. Four inviscid grids and one viscous grid were built to

look at grid convergence (Appendix C) for both steady solutions at angles-of-attack

from 0 to 20 degrees, and for unsteady LCO solutions. Based on the results of this

study, it was determined that the computational expense was prohibitive for viscous

LCO simulations. All Goland+ LCO simulations were therefore computed using the

inviscid solver. Based on the results of the grid convergence study, the clean Goland+

results presented in section 4.2 were obtained from an inviscid grid which consisted

of 194,780 tetrahedral cells with 9,178 cell faces on the wing.

At 600 ft/sec (182.88 m/sec) and Mach 0.92, the dynamic pressure was be-

yond the flutter point and was shown by Snyder, et al. [51] to result in LCO.

For the Goland+, these flow conditions fell within the transonic flutter dip region.

To match the conditions of Snyder, et al. [51], the far-field density, temperature,

and pressure were set to 0.0023771 slugs/ft3 (1.225 kg/m3), 518.67◦R (288.15 K),

and 722.1813 lb/ft2 (34578.04 Pa) respectively, while R was set to 585.7438
ft·lbf

slug·◦R

(97.951 N ·m
Kg·K

). These flow parameters were used for all the clean wing and store

simulations in this study.

All of the Goland+ simulations used a time step of 0.001 seconds corresponding

to approximately 300 time steps per cycle. To check for time-step convergence, a

time step of 0.0005 was tested. Cutting the time step in half changed the mode 1

response by 0.367%, the mode 2 response by 0.027%, the CL response by 0.029%,

and the frequency by 0.160%. These changes were sufficiently small that the time

step of 0.001 seconds was considered converged.

To determine the role of store aerodynamics in LCO, grids for various store

configurations were created and used with the same structural model used by the
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clean wing. Therefore, in these cases, the stores were modelled aerodynamically but

not structurally. The tip mass was retained in the structural model because it was

necessary for the clean wing to obtain LCO. The grids were created by starting with

the clean grid of 68,949 tetrahedral cells with 518 cell faces on the wing, and then

adding store shapes.

Under-wing and tip stores were added to the Goland+ wing and the same initial

perturbation and boundary conditions were used as for the clean wing. Under-wing

stores can be added to the Goland+ wing at any rib station. These stations are evenly

spaced 2 ft (0.6096 m) apart. Aerodynamic forces and moments were calculated for

the store at the point the pylon joined the wing on the elastic axis. These forces

and moments were transferred into the structural model at this point. Under-wing

stores were added at 20% (4 ft (1.2192 m)), 50% (10 ft (3.048 m)), and 80% (16 ft

(4.8768 m)) half-span. The under-wing configurations consisted of the Goland+

grid with a 10 ft (3.048 m) long, 12 in (0.3048 m) diameter cylindrical store with

an elliptic nose cone centered below the wing. The top of the store was located

12 in (0.3048 m) below the bottom of the wing and was attached to the wing via a

biconvex-shaped pylon that was 3 ft (0.9144 m) long centered chordwise under the

wing. The grid with a tip store consisted of the Goland+ grid with a 10 ft (3.048 m)

long, 5 in (0.127 m) diameter cylindrical store with an elliptic nose cone centered on

the wing tip. These four configurations are shown in Figure 4.1.

Additional store configurations were also analyzed in order to determine how

store modifications change the store forces or change the interference on the bottom

of the wing. These additional configurations included the addition of fins to the

stores, changes in pylon height, fore/aft movement of the stores, changes in store

diameter, and multiple stores. The effect fins on stores had on LCO was examined by

adding fins to the tail of the stores for the four store configurations. The pylon height

effect was studied by changing the height from 12 in (0.3048 m) to 6 in (0.1524 m).

The effect of stream-wise positioning of the store was examined by modifying the
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(a) Goland+ 20% Half-span Under-
wing Store

(b) Goland+ 50% Half-span Under-
wing Store

(c) Goland+ 80% Half-span Under-
wing Store

(d) Goland+ Tip Store

Figure 4.1 Goland+ Wing with Aerodynamic Stores Surface Grids
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(a) Small Stores Grid (b) Large Stores Grid

Figure 4.2 Goland+ with Multiple Stores Surface Grids

position of the under-wing store grids by shifting the stores 2 ft (0.6096 m) fore

and aft, while the 12 in (0.3048 m) pylon remained centered beneath the wing. The

effect store diameter had on LCO was examined by doubling the under-wing store

diameter to 24 in (0.6096 m) and the tip store diameter to 10 in (0.254 m). Finally,

multiple, small-diameter stores were added to the Goland+ wing to create further

interference on the bottom of the wing. The tip store and the under-wing stores at

20% and 50% half-span, were added to the Goland+ wing (Figure 4.2a). This was

repeated for the large diameter stores (Figure 4.2b).

Inertial forces were added to the stores in order to determine the relative im-

portance of store aerodynamics versus store mass. The inertial forces were calculated

based on a mass of 25 slugs (364.8476 kg) located a fixed distance from the elastic

axis. The configurations with a 12 in (0.3048 m) diameter under-wing store centered

on a 12 in (0.3048 m) pylon and the 5 in (0.127 m) diameter tip store were run with

a store mass located -2 ft (-0.6096 m), -1 ft (-0.3048 m), 0 ft (0.0 m), 1 ft (0.3048 m),

and 2 ft (0.6096 m) in the x-direction (stream-wise direction) from the elastic axis.
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4.2 Clean Goland+ Wing Results

The LCO for the Goland+ clean-wing configuration consisted of a nearly in-

phase coupling of mode 1 and mode 2 which produced a single-degree-of-freedom,

torsional motion, with an axis of rotation running from the elastic axis at the wing

root to a point slightly forward of the leading edge at the wing tip. The LCO had an

amplitude of ±1.065 for CL (Figure 4.3), ±0.47 for CM , and ±20.6 degrees for the tip

angle-of-attack. There was significant hysteresis in CM as shown in Figure 4.5. This

was expected because LCO is a non-linear phenomenon. If it were linear with no

hysteresis, CM versus angle-of-attack would form a straight line. The two dominant

modes had an amplitude of ±8.8 for mode 1 and ±7.5 for mode 2 (Figure 4.3).

The amplitude of mode 3 was ±0.66 which was only 7.5% of the contribution of

mode 1. The remaining modes contributed even less. A power-spectral-density plot

of the motion showed that the power was primarily at 3.3 Hz and 9.8 Hz with some

contribution from 6.5 Hz and 10.7 Hz (Figure 4.4). The dominant modes in the

LCO response were mode 1 followed closely by mode 2. However, the dominant

forces were mode 1 followed by mode 4. The remaining force contribution was in

mode 3, mode 5, then finally mode 2 and mode 6 (Figure 4.6).

The only nonlinearity present was due to the existence and movement of shocks.

There was no separation (inviscid flow) and no structural nonlinearity. The shock

was initially located at approximately 80% chord where it ran from the wing root,

to the wing tip, with a slight curve forward before disappearing at the wing tip

(Figure 4.7). As the wing began to deform, the shock started to slowly move fore

and aft sinusoidally (type-A shock motion [56]). As the amplitude of the wing motion

increased, the magnitude of the shock strength changed periodically with the motion

until the shock disappeared during part of its aft motion (type-B shock motion [56]).

Transition from type-A to type-B was observed at approximately 2.9 seconds, ranging

from the wing root to about 50% span. The shock motion for the outboard 50%

span remained type-A. The inboard type-B shock motion limited the energy flow
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Figure 4.7 Steady State Density Contours

and changed the mode 1 amplitude growth from an exponential growth to a linear

growth, as seen in Figure 4.3. This type-B motion continued to gain strength until

it consisted of an appearing and disappearing shock at the trailing edge with no

observable fore/aft motion. However, this type-B shock motion was only on the

inboard 50% span. Most of the energy flowing into the structure was occurring on the

outboard 50% span. At approximately 4.6 seconds, a periodic lambda shock began

to appear and disappear near the wing tip in conjunction with a strong normal shock

moving fore and aft at the trailing edge. This lambda shock and normal shock further

limited the energy transferred from the fluid to the structure. At 6.4 seconds, the

wing was in LCO. The combination of type-B shock motion, lambda shock motion,

and trailing-edge normal-shock motion were responsible for quenching the energy

flow from the fluid to the structure resulting in LCO for this wing.

The coupling of mode 1 and mode 2 into a single-degree-of-freedom, torsional

motion about a point ahead of the leading edge, leads to a wing twisting motion such
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that the aerodynamic forces on the wing are constantly pushing the wing toward the

static aeroelastic position. When the wing bends down and twists up, the aerody-

namic forces try to restore the wing to its static aeroelastic position. However, the

restoring forces are large enough that the amount of energy transferred into the wing

causes the wing to overshoot its neutral point, bending and twisting even further in

the opposite direction, leading to a growing oscillation. When the oscillations grow

to the point that the trailing-edge shock and lambda shock appear near the wing

tip, the shocks limit the force on the wing, thereby limiting the overshoot. When the

shock strength reaches the point that it balances the inertial forces, a stable LCO is

achieved. Figure 4.8 illustrates the pressure distribution on the wing. If the normal

shock and lambda shock were not present, the coefficient of pressure (CP ) on the top

of the wing would be lower. The net force on the wing would therefore be higher,

leading to the wing bending and twisting further in each subsequent cycle.

During a LCO cycle (Figure 4.9), the wing starts bending down and twisting

up. A normal shock appears near the trailing edge on the outboard portion of the

wing (Figure 4.9a). This normal shock increases the pressure on top of the wing and

begins to limit the flow of energy from the fluid into the wing. As the wing continues

to bend down and twist up, a lambda shock appears near the tip (Figure 4.9b). When

the lambda shock first appears, it runs from the leading edge of the wing near the

tip to where the trailing-edge normal shock meets the trailing edge near 50% span.

As the wing continues to bend down and twist up, the lambda shock strengthens

and the shock angle increases. At the extreme of the wing motion, the lambda shock

runs from the leading edge of the wing near the tip, to the center of the normal

shock at the trailing-edge, at approximately 75% span (Figure 4.9c). As the wing

then begins to straighten and untwist, the lambda shock reverses direction and the

shock angle begins to decrease. The normal shock at the trailing edge also begins

to weaken and move aft (Figure 4.9d). At the end of the the first half of the LCO

cycle, the shocks are completely gone and the forces on the top and bottom of the
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Figure 4.8 Clean Wing at 6.815 Seconds (Pressure Distribution)
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wing are nearly balanced (Figure 4.9e). This is repeated for the second half of the

LCO cycle when the wing starts to bend up and twist down.

Figure 4.10 shows the steady pressure contours for a rigid wing at 20 degrees

angle-of-attack. The forces on the rigid-wing airfoil section are much higher than

those shown in Figure 4.8e, even though the angle-of-attack at the tip is approxi-

mately the same. This difference in force is because of the shocks, which provide

the quenching mechanisms responsible for LCO in this wing. The normal shock and

lambda shock do not appear if the wing is given a constant angle-of-attack. However,

if the wing is deformed into the bent and twisted shape that occurs during LCO and

a steady-state flow solution is computed, the lambda and trailing-edge shocks are

present. These shocks are present because of the shape of the wing and not because

of the dynamic motion of the wing. The dynamic motion does, however, play a role

in the shock strength and movement. The shocks are weaker and slightly aft when

computed for steady-state flow versus those computed for dynamic motion. The

coupling of the primary bending and twisting modes is what leads to this deformed

shape, which in turn leads to shock motion that provides the energy quenching nec-

essary for LCO. The aerodynamic forces dictate how fast the oscillations grow and

the final amplitudes, not whether LCO exists. This was further demonstrated by

changing the airfoil on the Goland+ wing in order to change the aerodynamic forces

(Appendix D).

If a wing is undergoing LCO, a phase plot will trace an orbit along a closed path

and there will be zero net work over a cycle [5]. For the clean-wing configuration,

plunge rate versus plunge was plotted for the point where the elastic axis intersects

the wing tip. This plunge phase plot, shown in Figure 4.11a, shows the growth of the

amplitudes culminating in a closed path indicating LCO. The pitch rate of the wing

tip was also plotted versus pitch. This pitch phase plot, shown in Figure 4.11b, also

shows the growth of the amplitudes culminating in LCO. Because the LCO motion

appears to be a single-degree-of-freedom, torsional motion, the work being done on

4-11



(a) 6.760 Seconds (b) 6.790 Seconds

(c) 6.815 Seconds (d) 6.870 Seconds

(e) 6.890 Seconds

Figure 4.9 Clean Wing (Density Contours)
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Figure 4.10 Rigid Wing Airfoil CP plot for 20 degrees Angle-of-Attack

the wing by the fluid can be compared with the wing-tip angle-of-attack. As can be

seen in Figure 4.12, whenever the wing is twisting away from zero degrees, work is

being done on the fluid, and whenever the wing is twisting toward zero degrees, work

is being done on the structure. This results in two work cycles per LCO cycle. There

is a 5-degree phase lag between the work and angle-of-attack. This is because the

bending mode (mode 1) lags the torsion mode (mode 2) by 5 degrees (Figure 4.3).

Integrating the work over an LCO cycle should result in zero net work. However,

for this case, the work did not sum to zero. There was an error of 0.05% of the total

work done. This was because the thin-plate spline did not conserve energy across

the grid boundaries.

4.3 Goland+ Wing with Under-Wing Stores Results

One of the goals of this study was to determine the role of store aerodynamics

in LCO. It was found that aerodynamic store shapes affect LCO in two offsetting
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Table 4.1 Effect of Under-Wing Stores on Peak Values

20% half-span 50% half-span 80% half-span

CL 1.10% 4.08% 1.28%
Tip AOA 1.12% 4.96% 2.56%
Mode 1 Force 1.48% 5.22% 0.28%
Mode 2 Force 13.69% 25.15% 14.93%
Mode 3 Force 2.44% 1.01% 1.73%
Mode 4 Force 0.50% 1.96% 0.57%

ways: by interfering with the flow field on the wing surface, and by transferring

additional store forces into the structure. The under-wing stores interfere with the

airflow on the lower surface of the wing which decreases LCO amplitudes, whereas,

store forces transferred into the wing structure directly increase LCO amplitudes.

The further outboard the store was placed, the greater the angle-of-attack

experienced by the store. This resulted in higher store loads and increased LCO am-

plitude. An exception to this was found at the 50% half-span location (Figure 4.13).

Small stores with the 12 in (0.3048 m) pylon were placed at 20%, 50%, and 80%

half-span locations as discussed in section 4.1. Adding stores increased the mode 2

response in all cases. The mode 1 response decreased for stores at 20% and 80%

half-span and increased for stores at 50%. It was speculated that this increase was

because of the mode 3 mode-shape (Figure 3.7) which had large displacements in the

middle of the wing. Further weight was added to this speculation by observing that

the stores primarily contributed to mode 3 forces implying that the store located

where mode 3 provided the greatest deformation had the greatest effect. Adding

the under-wing stores increased the magnitude of the total modal forces, the magni-

tude of CL, and the magnitude of the tip angle-of-attack (Table 4.1). These changes

resulted in LCO being reached more quickly than with a clean wing.

For the 20% and 80% half-span configurations, the stores only contributed

0.2% of the peak force in mode 3. The 50% store contributed 0.7% of the peak

force in mode 3. To increase these store forces, fins were added to the tail of all

4-16



Plunge

P
lu

ng
e

R
at

e

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Clean Wing
Store20 Base
Store50 Base
Store80 Base
Tip Base

Goland+ Wing
Mach 0.92, 600 ft/sec

-0.3 -0.275 -0.25
-1

-0.5

0

0.5

1

(a) Plunge Phase Plot (Wing Tip)

Pitch

P
itc

h
R

at
e

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Clean Wing
Store20 Base
Store50 Base
Store80 Base
Tip Base

Goland+ Wing
Mach 0.92, 600 ft/sec

-0.38 -0.37 -0.36 -0.35
-1

-0.5

0

0.5

1

(b) Pitch Phase Plot (Wing Tip)
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the store configurations. The fins were aft of the wing so they did not affect the

flow field on the wing. For these small stores, fins did not make a difference in the

LCO behavior (Figure 4.14). They did increase the store forces, but the store forces

were so small compared to the wing forces that the effects on LCO were negligible.

The pylon height was changed from 12 in (0.3048 m) to 6 in (0.1524 m) in order to

change the store moments. Shortening the pylon only made a small difference in the

LCO behavior (Figure 4.15). The store forces and the wing response were similar,

regardless of the pylon height. Shortening the pylon led to lower mode 2 amplitudes,

or less twist, but otherwise, the behavior was the same regardless of pylon height.

The fins and pylon height weakly affected the twisting moment, whereas, the bending

force was the primary contributor to LCO.

The store forces that were transferred into the structural model were magnified

in order to amplify how the store forces affected the LCO. Solutions for the wing with

a 12 in (0.3048 m) diameter under-wing store centered on a 12 in (0.3048 m) pylon

were computed, but with the store forces that were calculated from the aerodynamic

loads being magnified by ±5 before being transferred into the structural model.

Altering the store forces in this manner affected the LCO (figures 4.16 and 4.17). The

store forces increased the total bending force on the wing, which increased the LCO

amplitude. The bending force primarily affected LCO by directly contributing to

mode 1. Magnifying the bending force increased the amplitude of the LCO because

it increased the restoring force, resulting in greater overshoot beyond the neutral

position. Magnifying and reversing the phase of the loads (multiplying forces by −5)

decreased the restoring force resulting in less overshoot and a decreased amplitude

LCO. These results reinforced the hypothesis that the increased LCO amplitudes

observed with small under-wing stores were caused by the store loads which were

greater than the quenching effect caused by interference of the flow on the bottom

of the wing.
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The second mechanism by which under-wing stores affected LCO was by inter-

fering with the airflow on the bottom of the wing. The 80% half-span configuration

with a small store was computed with the store forces turned off in order to isolate

this interference effect. When the store forces were ignored, CL decreased 0.97%,

CM decreased 1.26%, the tip angle-of-attack decreased 1.59%, mode 1 amplitudes

decreased 1.67%, and mode 2 amplitudes decreased 1.82%. These results demon-

strated that interference from a small store slightly quenched the LCO.

The under-wing store grids with the 12 in (0.3048 m) pylon and fins were

modified to see how stream-wise store position affects the interference on the bottom

of the wing. The stores were shifted 2 ft (0.6096 m) fore and aft. The pylon remained

centered beneath the wing. Moving the store aft produced LCO (Figure 4.18). When

the 50% half-span store and the 80% half-span store were moved forward, the flow

separated on the store causing the inviscid fluid solver to fail, so no conclusions could

be drawn. The 20% half-span store resulted in LCO when moved forward. This LCO

magnitude was similar to the original centered store position. When the stores were

moved aft, they only slightly affected the LCO. Shifting under-wing stores fore or

aft only slightly changed the LCO because the change in the forces was very small

and the interference of the flow on the wing because of the store remained small.

To further amplify the interference effect, the stores without fins were doubled

in diameter to 24 in (0.6096 m). The centered 12 in (0.3048 m) pylon was retained.

As can be seen in Figure 4.19, the large diameter store had a large affect on the

LCO. Whereas adding a small under-wing store produced an LCO of slightly greater

amplitude, adding a large under-wing store resulted in an LCO of smaller amplitude.

The further outboard the large store, the smaller the amplitude of the LCO. Again,

the total modal forces did not change greatly for large stores. The aerodynamic

forces were slightly higher with a large store than with a small store but were still

less than 1% of the total forces for all modes. This indicated that the large store was

affecting the flow on the bottom of the wing and it was influencing the dynamic shock
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Figure 4.18 Phase Plots for Wing with Stores Shifted Stream-Wise
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motion which was limiting the energy flow into the structure. The interference effect

was not great enough to damp out the oscillations, but it was enough to decrease

the LCO amplitude.

The large store at 80% half-span illustrates how under-wing stores affect the

flow field on the bottom of the wing, and thereby, affect the LCO. When the wing

was bent up and twisted down, the flow on the top of the wing was unchanged from

the clean wing condition. However, on the bottom of the wing (Figure 4.20a) there

were significant changes when compared to the clean wing at the same point in an

LCO cycle (Figure 4.20b). The lambda shock was weak if detectable at all, and the

normal shock at the trailing edge was weaker than that experienced by the clean

wing. The store wake, or the flow from the store that impinged on the flow on the

bottom of the wing, increased the pressure on the front half of the wing in the vicinity

of the store. The normal shock then increased the pressure again (Figure 4.21). The

increase in pressure decreased the downward restoring force on the wing, which had

the same effect as the lambda shock on the clean wing, limiting the energy flow

into the wing. When the wing was bent down and twisted up, the flow on the top

of the wing was unchanged from the clean wing condition. The lambda shock and

trailing-edge shock were present, though weaker than those present in the clean wing

because of the lower pitch and plunge amplitudes (Figure 4.22). These shocks were

still providing quenching leading to LCO. If the store was large enough to have a

large wake raise the pressure on the wing, it provided quenching. A very small store

with a minimal wake had minimal impact on the LCO caused by interference from

the store.

Multiple, small-diameter stores were added to the Goland+ wing to create

further interference. A tip store and the under-wing stores at 20% and 50% half-

span were added to the Goland+ wing. The centered 12 in (0.3048 m) pylon was

retained. The small-diameter stores resulted in an LCO with an amplitude slightly

greater than the clean wing. For the small stores, the store forces effect was stronger
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(a) Large 80% Store

(b) Clean Wing

Figure 4.20 Large 80% Store at 10.495 Seconds (Density Contours)
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Figure 4.22 Large 80% Store at 10.645 Seconds (Pressure Distribution)
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than the interference damping effect (Figure 4.23). Multiple, large-diameter stores

were then added to the Goland+ wing to create further interference. When the large-

store configuration was run, the oscillations damped out. The multiple, large stores

interfered with the flow on the bottom of the wing to the extent that it prevented

the energy flow into the structure, resulting in damping.

One effect that under-wing stores had on LCO was shown by the mode 1

response oscillating about a negative value instead of about zero, as with a clean

wing or with a tip store. This showed that the presence of the under-wing stores

shifted the static aeroelastic solution. Shifting the static aeroelastic solution did

not change the LCO response, only the neutral configuration about which the wing

oscillated. This was further demonstrated by computing the solution for the clean

Goland+ wing at a positive angle-of-attack (Appendix E).

To examine the effect of store mass position on LCO as opposed to the store

aerodynamics, inertial forces were added to the store aerodynamic forces. The 12 in

(0.3048 m) diameter under-wing stores centered on 12 in (0.3048 m) pylons were

run with a store mass located -2 ft (-0.6096 m), -1 ft (-0.3048 m), 0 ft (0.0 m), 1 ft

(0.3048 m), and 2 ft (0.6096 m) in the x-direction (stream-wise direction) from the

elastic axis. As can be seen in Figure 4.24, when the mass was added on the elastic

axis or forward of the elastic axis, the LCO amplitude only slightly increased for

the under-wing store located at 20% half-span. However, if the mass was added 1 ft

(0.3048 m) aft of the elastic axis, a different LCO mode was encountered (figures 4.24

and 4.25). The amplitudes grew in the same manner as the case without the mass,

but at approximately 4 seconds, mode 4 started growing and eventually stabilized.

At approximately 14 seconds, a new LCO state was reached. When the mass was

added 2 ft (0.6096 m) aft of the elastic axis, all of the modes grew, leading to

divergent flutter.

When the mass was added to the 50% half-span, under-wing store, divergent

flutter was obtained for all stream-wise locations. It was hypothesized that this was
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Figure 4.23 Phase Plots for Wing with Multiple Stores
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because the stores primarily contributed to mode 3 forces. When the store mass was

located where mode 3 provided the greatest contribution, it had a large effect. When

the mass was placed on the elastic axis, it came close to stabilizing into an LCO.

It initially appeared to enter the LCO condition observed without the mass, but at

approximately 6 seconds, mode 4 started to diverge followed by mode 3, eventually

driving the system to divergent flutter (Figure 4.26). For the other 50% half-span

mass locations, the system immediately went into divergent flutter.

Adding the mass to the 80% half-span store illustrated the stabilizing and

destabilizing effect mass position provided, as shown in Figure 4.27. When the mass

was located on the elastic axis, a LCO response similar to the no-mass case was

observed. As the mass was moved forward of the elastic axis, the LCO amplitudes

decreased drastically while mode 2 increased in dominance and mode 1 decreased.

This result was expected because adding a mass forward of the elastic axis raised the

flutter speed, which led to a decreased amplitude LCO. The modes continued to be
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Figure 4.26 Amplitudes for Point Mass on EA at 50% Half-span

coupled into a single-degree-of-freedom response. When the mass was moved aft of

the elastic axis, the LCO amplitudes increased significantly. Again, this matched the

expected result because adding a mass aft of the elastic axis lowered the flutter speed,

leading to an increased amplitude LCO. Mode 1 continued to grow in dominance

while mode 2 decreased in importance. The modes continued to be coupled into a

single-degree-of-freedom response, but with mode 4 growing and beginning to play

a role in the response. However, by the time the mass had moved 2 ft (0.6096 m)

aft, it was no longer a single-degree-of-freedom response, and a different LCO state

was reached. If the mass continued to move aft, mode 4 would begin to dominate

and divergent flutter would be encountered. Adding inertial forces did not change

the shock motion nor change the quenching mechanism. It did change the inertia of

the wing and determined how efficient the shock motion was at limiting the energy

transferred into the structure. As the wing twisted more due to a forward mass,

the shock motion caused the energy flow to be limited before the inertia grew too
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high, decreasing the amplitude of the LCO. Conversely, as the wing bent more for a

rearward mass, the inertia grew higher before the shock motion limited the energy

flow, thereby, increasing the amplitude of the LCO.

4.4 Goland+ Wing with Tip-Store Results

A tip store affected the circulation of the fluid around the wing tip and con-

tributed to store forces, but it did not interfere with the airflow on the bottom of

the wing. Adding a tip store increased the mode 1 and mode 2 responses. Like the

under-wing stores, the tip store primarily contributed to force in mode 3 where the

tip store was responsible for 4.8% of the total mode 3 force. However, the total force

in mode 3 decreased by 6.63% from that of the clean wing. Adding the tip store

increased CL by 5.06% and the tip angle-of-attack by 1.43%. Unlike the under-wing

store, the mode 1 response for the tip store oscillates about zero instead of about

a negative value, the same as the clean wing. These changes resulted in the am-

plitudes of the motion growing faster than the clean wing and reaching LCO more

quickly. The tip store increased the mode 1 amplitudes which increased the amount

of bending.

The tip store was shifted 2 ft (0.6096 m) fore and aft. When the tip store was

moved forward, the motion damped out. Analysis showed that the flow around the

tip of the wing was very sensitive to the presence of a store. Moving the tip store

forward appeared to prevent the energy from flowing into the wing because mode 1

and mode 2 did not couple into a single-degree-of-freedom flutter mode, but remained

independent. Unlike the LCO cases, store forces also directly correlated with modal

response with mode 1 and mode 2 being the dominant force contributors. Moving

the tip store aft resulted in an LCO state with a similar twist and greater plunge

compared to the centered store LCO. In this case, mode 1 increased greatly when

the store was shifted aft. The tip angle-of-attack, CL, CM , and the modal forces all

increased slightly. Mode 3 decreased slightly while modes 2, 4, 5, and 6 all increased
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slightly. Overall, moving the tip store fore and aft showed that the wing-tip region

was very sensitive to flow changes. These flow changes manifested as changes in the

mode 1 response leading to damping (move tip store forward) or by increasing the

amount of plunge (move tip store aft).

In order to amplify the effect the store forces were having on the LCO, the

store forces were magnified by ±5 before being transferred into the structural model.

Magnifying the loads in this manner affected the LCO (figures 4.16 and 4.17). Tip

stores have the same effects as under-wing stores: magnifying the bending force on

the wing, and increasing the LCO amplitude. The same effect was seen when the

tip store diameter was increased to 10 in (0.254 m). As can be seen in Figure 4.19,

the large diameter tip store produced a higher amplitude LCO. The large tip store

contributed 9% of mode 3 forces. Unlike the under-wing stores, this was a significant

fraction of the total forces on the wing. The store basically acted as an extension

of wing area, increasing the bending forces on the wing and increasing the LCO

amplitude.

To examine the effect of tip-store mass position on LCO as opposed to store

aerodynamics, inertial forces were added to the store aerodynamic forces. The 5 in

(0.127 m) diameter tip store was run with a store mass located -2 ft (-0.6096 m),

-1 ft (-0.3048 m), 0 ft (0.0 m), 1 ft (0.3048 m), and 2 ft (0.6096 m) in the x-direction

(stream-wise direction) from the elastic axis. When the mass was added at the wing

tip on the elastic axis, mode 6 began to grow at 2.5 seconds and led to divergent

flutter. When the mass was added aft of the elastic axis, all of the modes, except

for mode 2, began to grow which led to divergent flutter. When the mass was added

forward of the elastic axis (Figure 4.28), it appeared that a coupled LCO response

was obtained with mode 2 being increasingly dominant the further forward the mass

was moved. However, at approximately 10 seconds, mode 4 rapidly began to grow

leading to divergent flutter (Figure 4.29). Adding inertial forces forward of the

elastic axis changed the coupling of the modes and did not lead to a lower amplitude
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LCO. As seen with the under-wing stores, adding the inertial forces did not change

the shock motion nor change the damping mechanism but instead changed how the

modes couple. The coupling of the primary bending and twisting modes is what led

to shock motion that provided the energy quenching necessary for LCO.
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V. Conclusions

5.1 Conclusions

FLUENT 6.1 was successfully integrated with a modal structural model to

form an aeroelastic program based on a fully unstructured grid formulation capable

of simulating flutter and LCO. Using this program, the aerodynamic nonlinearity re-

sponsible for LCO of the Goland+ clean-wing (with tip mass) at Mach 0.92, 600 ft/sec

(182.88 m/sec), was analyzed. The LCO consisted of a nearly in-phase coupling of

mode 1 and mode 2, which produced a single-degree-of-freedom torsional motion

with an axis of rotation running from the elastic axis at the root of the wing, to

a point slightly forward of the leading edge at the tip of the wing. For LCO to

exist, a nonlinearity must have been present to provide the quenching mechanism

that limited the amplitude of the oscillations. For the Goland+ wing, the only non-

linearity present was the appearance/disappearance of shocks. Flow separation and

structural nonlinearity were not modelled. Periodically appearing and disappearing

lambda and trailing-edge shocks decreased the restoring forces on the Goland+ wing,

resulting in a balancing of the inertial forces and a stable LCO.

For the Goland+ wing, as the oscillations grew, there was a transition from

Tijdeman type-A shock motion [56], to Tijdeman type-B shock motion [56] in the

inboard half of the wing. The shock motion in the outboard half of the wing span

remained type-A. The type-B shock motion limited the flow of energy from the fluid

into the structure, and changed the amplitude growth from an exponential growth to

a linear growth. The type-B motion continued to gain strength until it consisted of

an appearing and disappearing shock at the trailing edge, with no observable fore/aft

motion.

Two additional quenching mechanisms later appeared in the outboard half-

span, which further limited the amplitude growth and led to LCO. The first was

a strong trailing-edge shock that moved fore and aft, and the second was a strong
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lambda shock that ran from the leading edge of the wing near the tip, to the normal

shock on the trailing edge. These shocks decreased the restoring force on the wing

limiting the overshoot, thereby balancing the inertial forces producing a stable LCO.

The combination of type-B shock motion, lambda shock motion, and the motion of

the normal shock at the trailing edge was responsible for limiting the energy flow

from the fluid to the structure resulting in LCO.

Aerodynamic store shapes were added to the Goland+ wing at different span-

wise locations to determine how store aerodynamics affect LCO. It was found that

aerodynamic store shapes affect LCO in two ways: by interfering with the flow field

on the wing surface, and by adding loads into the structure. Under-wing stores inter-

fered with the airflow on the lower surface of the wing, diminishing LCO amplitudes.

On the other hand, the transfer of store loads into the wing structure increased LCO

amplitudes for both tip stores and under-wing stores. Under-wing stores also led to a

negative offset of the amplitudes of the primary bending mode by shifting the static

aeroelastic solution. The addition of stores did not affect the LCO frequency, which

was always approximately 3.3 Hz. In addition to the negative offset, under-wing

stores decreased the mode 1 amplitudes, which decreased the amount of bending.

Tip stores increased the mode 1 amplitudes, which increased the amount of bending.

Aerodynamic store forces increase LCO amplitudes. This effect was demon-

strated when the aerodynamic store forces were magnified in order to better discern

their effect on LCO. Magnifying the forces showed that the twist of the wing was

driven by mode 1 and mode 2 coupling. The bending force primarily affected the

LCO by directly contributing to mode 1. Magnifying the bending force increased

the amplitude of the LCO. This was expected because increasing the restoring force

resulted in greater overshoot beyond the neutral position. Magnifying but reversing

the direction of the aerodynamic store forces decreased the restoring force resulting

in less overshoot and a decreased amplitude LCO.
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Interference from under-wing stores decreases LCO amplitudes. The larger the

diameter of the under-wing store, the larger the interference with the flow field on the

bottom of the wing. This led to increased energy quenching and a lower amplitude

LCO. Multiple stores were added to the Goland+ wing. Again, it was found that

the larger the store, the more energy quenching that was present due to interference

with the flow field on the bottom of the wing.

In summary, The energy quenching mechanism responsible for limit-cycle os-

cillation in the Goland+ wing has been determined. The primary bending and tor-

sional modes couple, resulting in periodically appearing and disappearing lambda

and trailing-edge shocks which decrease the restoring forces on the wing, limiting

the flow of energy from the fluid into the structure. Stores affect LCO in two offset-

ting ways. Adding under-wing stores interferes with the airflow on the bottom of the

wing which also reduces the restoring forces, thereby providing additional quenching

of the LCO. Under-wing and tip stores also add carriage loads into the wing which

increases the flow of energy from the fluid into the structure, thereby amplifying the

LCO.

5.2 Recommendations for Future Research

The Goland+ wing was analyzed with an inviscid fluid solver and using the

thin-plate spline to transfer data between the aerodynamic and structural grids.

These splines conserved total forces and moments but did not conserve energy. The

next step in the research should involve incorporation of an energy-conserving spline

that more accurately transfers data between the grids.

FLUENT’s grid deformation algorithms were the main limitation preventing

the use of the viscous solver and FLUENT’s turbulent models. Grid deformation

could be controlled externally by incorporating a faster and more robust grid defor-

mation algorithm tailored for deforming wings. This could be implemented through

a UDF, bypassing FLUENT’s internal grid deformation algorithms. FLUENT In-

5-3



corporated is also addressing this short-coming and may provide a faster and more

robust grid deformation algorithm in a future release. With a faster, more robust

grid deformation algorithm, and using the viscous solver, the flow around the wing

tip and around the stores could be examined in more detail. A viscous analysis

into how stream-wise movement of stores could then be conducted. Viscous analysis

would also allow for nonlinearities due to shock-wave/boundary-layer interaction to

be studied.

Inertial forces were added to the Goland+ wing in order to compare how store

mass position affected LCO as opposed to the store aerodynamics. In this research,

inertial forces were added to the store forces by simulating the addition of a store

mass. The structural model was not modified; the mass matrix, stiffness matrix,

and the modal matrix did not contain any store mass effects. In future research,

the structural model should be modified to account for these store masses in order

to validate the results what were obtained by simulating the masses. The effect of

adding masses at different span-wise and stream-wise positions on LCO and on the

flutter stability boundary should be further studied.

There is significant interest in the discovery of LCO during flight test of an

F–16. Future research should try to duplicate this flight test scenario. Initial simu-

lations of this scenario did not result in LCO (Appendix F). In the initial inviscid

simulations, only the wing and the tip launcher were modelled. The fuselage and

under-wing stores were not modelled. The dominant bending and twisting modes

did not couple into a single degree-of-freedom flutter mode as did the Goland+ wing.

Additional testing should be conducted to determine whether LCO can be obtained

with this simplified wing or whether additional grid details, such as the fuselage and

under-wing stores, need to be included. Viscous modelling may also be necessary to

duplicate the flight test results.
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Appendix A. Spline Routines

For aeroelastic analysis, there are two grids; an aerodynamic grid on the surface of

the body, and a structural grid on the structural members of the body. Data needs to

be transferred between these two grids, but they normally are non-point matching.

In this case, a spline matrix can be used to transfer data between the grids.

A.1 Thin-Plate Spline

The thin-plate spline method provides a means to characterize an irregular sur-

face by using functions that minimize
∫

Ω
|D2v|2, a functional similar to the bending

energy of a thin plate [18]. Duchon [18] proved that only one solution exists in the

form

σ(t) =
∑

aεA

λa|t− a|2 ln |t− a|+ αot+ β (A.1)

with
∑

λa = 0 and
∑

λaa = 0.

The function in A.1 can be used to construct a function δ(x), given its values

at a set of N discrete “nodal” values [50]

δ(x̄) = β + αox
x+ αoy

y + αoz
z +

N
∑

i=1

λi|x̄− x̄i|
2 ln |x̄− x̄i|. (A.2)

The coefficients λi, β, αox
, αoy

, and αoz
are determined by solution of the minimiza-

tion problem [50]. Applying A.2 to each of the N nodes yields

Hi = β + αox
xi + αoy

yi + αoz
zi +

N
∑

j=1

λj|x̄i − x̄j|
2 ln |x̄i − x̄j|. (A.3)

Equation A.3 is subject to the following side conditions:

N
∑

i=1

λi =
N
∑

i=1

λixi =
N
∑

i=1

λiyi =
N
∑

i=1

λizi = 0. (A.4)
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Writing equations A.3 and A.4 in matrix notation gives

{δ} = [B]{λ}+ [R]{α} (A.5)

and

[R]T{λ} = 0. (A.6)

The elements of [B] are

Bij = r2ij ln(r
2
ij) (A.7)

and the elements r2ij are defined as

r2ij = (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2. (A.8)

The matrix [R] is defined as

[R] =















































1

1
...

1





























































x1

x2
...

xN





























































y1

y2
...

yN





























































z1

z2
...

zN















































. (A.9)

The column matrices {δ}, {λ}, and {α} are defined as

{δ} =































δ1

δ2
...

δN































, (A.10)
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{λ} =































λ1

λ2
...

λN































, (A.11)

and

{α} =































βo

αox

αoy

αoz































. (A.12)

Solving equations A.5 and A.6 for {λ} and {α} gives

{λ} =
[

[B]−1 − [B]−1[R]
[

[R]T [B]−1[R]
]

−1
[R]T [B]−1

]

{δ} (A.13)

and

{α} =
[

[R]T [B]−1[R]
]

−1
[R]T [B]−1{δ}. (A.14)

Letting subscript s represent the structural grid and subscript a represent the aero-

dynamic grid, equation A.5 can then be written as

{δa} = [Bas]{λs}+ [Ra]{αs}. (A.15)

The transformation spline matrix [S] is needed in the form

{δa} = [S]{δs}. (A.16)
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Therefore, {δs} can be factored out of equation A.15 and the equations can be solved

for [S],

[S] =
[

[Bas]
[

[Bs]
−1 − [Bs]

−1[Rs]
[

[Rs]
T [Bs]

−1[Rs]
]

−1
[Rs]

T [Bs]
−1
]

+[Ra]
[

[Rs]
T [Bs]

−1[Rs]
]

−1
[Rs]

T [Bs]
−1
]

. (A.17)

The elements of [Bas] and [Bs] are defined as

Basij
= r2asij

ln(r2asij
) (A.18)

and

Bsij
= r2sij

ln(r2sij
) (A.19)

where

r2asij
= (xai

− xsj
)2 + (yai

− ysj
)2 + (zai

− zsj
)2 (A.20)

and

r2sij
= (xsi

− xsj
)2 + (ysi

− ysj
)2 + (zsi

− zsj
)2. (A.21)

[Ra] and [Rs] are defined by equation A.9 where the a subscript stands for the

aerodynamic grid and the s subscript stands for the structural grid.

Once the spline transformation matrix [S] is generated, displacements and

coordinates of the displaced aerodynamic grid can be computed from displacements

of the structural grid with the following:

[δa] = [S][δs], (A.22)

[q] = [q]o + [δ] (A.23)
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where [q]o is the original undeformed grid. The grid coordinate matrices are defined

as

[q] =

















qx1
qy1

qz1

qx2
qy2

qz2
...

...
...

qxN
qyN

qzN

















. (A.24)

In addition, the transferal of forces from the aerodynamic grid to the structural grid

can be achieved by the transpose of [S] [1],

[Fs] = [S]T [Fa], (A.25)

where the force matrices are defined as

[F ] =

















Fx1
Fy1

Fz1

Fx2
Fy2

Fz2

...
...

...

FxN
FyN

FzN

















. (A.26)

A limitation of the thin-plate spline is that no two structural-grid points can

be located at the same coordinates, nor can all the structural-grid points lie in the

same plane [1].

A.2 Infinite-Plate Spline

The infinite-plate spline method [28] is based upon the small deflection equation

of an infinite plate. Mathematically, it is a two-dimensional implementation of the

thin-plate spline method. The changes to equations A.3, A.8, A.9, A.12, A.20, and

A.21 are as follows:

Hi = β + αox
xi + αoy

yi +
N
∑

j=1

λj|x̄i − x̄j|
2 ln |x̄i − x̄j|, (A.27)
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r2ij = (xi − xj)
2 + (yi − yj)

2, (A.28)

[R] =














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
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
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
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y2
...

yN
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

























, (A.29)

{α} =



















βo

αox

αoy



















, (A.30)

r2asij
= (xai

− xsj
)2 + (yai

− ysj
)2, (A.31)

and

r2sij
= (xsi

− xsj
)2 + (ysi

− ysj
)2. (A.32)

The remaining equations are the exact same as formulated for the thin-plate

spline. Equations A.24 and A.25 remain the same since the spline is still used for a

three-dimensional problem. Since the aerodynamic grid is three dimensional, when

creating the [Ra] matrix as shown in equation A.29, the aerodynamic grid points are

projected to the spline plane on which the structural grid lies. Or in other words,

the z-component of the grid coordinates are ignored.

Unlike the thin-plate spline, the structural-grid points can lie on the same plane

for the infinite-plate spline. However, they can not lie in a line. Like the thin-plate

spline, no two structural-grid points can be located at the same coordinates [1].
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A.3 Spline Conclusions

Any spline matrix can be used with the aeroelastic program. Two have been im-

plemented, the thin-plate spline and the infinite-plate spline. If a three-dimensional,

structural grid is used, the thin-plate spline provides superior results [50]. If the

structural grid is a two-dimensional, flat plate, the infinite-plate spline must be used

because the thin-plate spline is invalid if all the points lie in a single plane. If the

structural grid is based on a beam model with all the grid points in a straight line,

neither of these two methods will work because neither method is valid if all the

points lie in a line.

A-7



Appendix B. Structural Model

The semi-discrete equations of motion can be written as

[M ]{ü}+ [C]{u̇}+ [K]{u} = {F} (B.1)

where [M ] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,

{F} is the applied forces, {u} is the modal displacements, {u̇} is the modal velocities,

and {ü} is the modal accelerations [30].

One of the most widely used integration methods for solving this initial-value

problem is the Newmark method [30], which consists of the following equations:

(

[M ] + γ∆t[C] + β∆t2[K]
)

{ü}n+1 = {F}n+1 − [C] ({u̇}n + (1− γ)∆t{ü}n)

− [K]

(

{u}n +∆t{u̇}n +
∆t2

2
(1− 2β){ü}n

)

, (B.2)

{u̇}n+1 = {u̇}n +∆t [(1− γ){ü}n + γ{ü}n+1] , (B.3)

{u}n+1 = {u}n +∆t{u̇}n +
∆t2

2
[(1− 2β){ü}n − 2β{ü}n+1] . (B.4)

If γ = 1

2
, this implicit method is second-order accurate [30]. This method is stable

if ∆t ≤ Ω

ω
where ω is the maximum natural frequency [30]. If a linear acceleration

is assumed, β = 1

6
and Ω = 3.464 [30].

Assuming a linear acceleration and no structural damping, equations B.2, B.3,

and B.4 simplify to:
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(

[M ] +
∆t2

6
[K]

)

{ü}n+1 = {F}n+1 − [K]

(

{u}n +∆t{u̇}n +
∆t2

3
{ü}n

)

, (B.5)

{u̇}n+1 = {u̇}n +
∆t

2
(({ü}n + {ü}n+1) , (B.6)

and

{u}n+1 = {u}n +∆t{u̇}n +
∆t2

6
(2{ü}n + {ü}n+1) . (B.7)

Within the aeroelastic routine, forces are calculated at the centroid of each

aerodynamic grid wing face. These forces are then splined to the structural grid

nodes. A generalized force vector for the modal system is then calculated from

{Fg} = [Φ]T{Fs}. (B.8)

{Fg} is the generalized force and moment vector, {Fs} is the force and moment

vector for the structural grid nodes, and [Φ] is the modal matrix, the columns of

which are the eigenvectors. There is a slight phase lag between the fluid solver and

the structure. The forces can be extrapolated forward in time to try and mitigate

this phase lag if desired. The extrapolated, generalized force and moment vector is

calculated as

{Fg}N = 2.5{Fg}N − 2.0{Fg}N−1 + 0.5{Fg}N−2. (B.9)

Once the forces are determined, Equation B.5 is first solved for the generalized

acceleration vector {ü}n+1 using an LUP-decomposition [11]. Equations B.6 and

B.7 are then solved directly to get the generalized velocity vector {u̇}n+1 and the

generalized displacement vector {u}n+1. Displacement and rotation of the structural
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grid nodes are then found from

{δs} = [Φ]{u}n+1. (B.10)

These new displacements are then splined to get new aerodynamic grid dis-

placements and coordinates in order to deform the mesh.
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Appendix C. Grid Convergence Study

Once the aeroelastic program was validated, it was used to study LCO of the Goland+

wing described in section 3.2.2. Four grids were built to look at grid convergence;

a coarse grid consisting of 68,949 tetrahedral cells with 518 cell faces on the wing,

a medium grid consisting of 269,596 tetrahedral cells with 13,358 cell faces on the

wing, a fine grid consisting of 660,347 tetrahedral cells with 42,102 cell faces on the

wing, and a viscous grid consisting of 2,203,065 tetrahedral, prism, and pyramid cells

with 54,886 cell faces on the wing. The coarse, medium, and fine grids were tested

using the inviscid solver. The viscous grid was tested using the Spalart-Allmaras

turbulence model. These grids were used to compute steady state solutions for

Mach 0.92, 600 ft/sec (182.88 m/sec), at angles of attack of 0 to 20 degrees in 2 degree

increments. CL and CM plots are shown in Figure C.1. Below 11 degrees angle-of-

attack, all of the inviscid grids produced similar CL and CM results. The viscous

grid CL results are less and the CM results are more than the results produced by the

inviscid grids. Above 11 degrees, the coarse grid is under-predicting CL and slightly

over predicting CM while the viscous results and medium grid inviscid results were

approximately the same. The viscous results did not predict a stall under 20 degrees,

however, a small separation bubble behind the leading edge did appear at 10 degrees

angle-of-attack and continued to grow larger as the angle-of-attack was increased.

The inviscid fluid solver failed in this region for the fine grid at angles-of-attack

greater than 12 degrees.

A slice through the wing was taken at 3.2808 ft (1 m) span and the coefficient

of pressure for the airfoil was plotted. As can be seen in figures C.2 - C.12, the

coarse grid did not accurately capture the pressure distribution across the wing. At

zero degrees angle-of-attack, the shock was located at a chord position of 4.921 ft

(1.5 m). For the inviscid grids, as the angle-of-attack was increased to 2 degrees,

the shock moved immediately to the trailing edge of the wing. For the viscous grid,
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Figure C.12 CP plots for Mach 0.92, 600 ft/sec (182.88 m/sec), 20 degrees

the shock slowly moved aft and did not reach the trailing edge until approximately

8 degrees. At 14 degrees angle-of-attack and above, the viscous results showed that

the flow separated behind the shock on the top of the wing.

The coarse grid failed to accurately capture the pressure distribution at the

leading and trailing edge of the wing but it did capture the pressure distribution in

the center of the wing. A fourth inviscid grid was then built that fell between the

coarse and medium grids. This grid correctly captured the pressure distribution at

the leading and trailing edge of the wing, but with fewer cells than the medium grid.

It consisted of 194,780 tetrahedral cells with 9,178 cell faces on the wing. This grid

was used to compute a clean-wing baseline solution against which all other LCO

simulations were compared.

At 600 ft/sec (182.88 m/sec) and Mach 0.92, the dynamic pressure is beyond

the flutter point and was shown by Snyder, et al. [51] to result in LCO. For the

Goland+, these flow conditions fall within the transonic flutter dip region. This
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case was used as a baseline for all simulations in this study. To match the condi-

tions of Snyder, et al. [51], the far-field density, temperature, and pressure were set

to 0.0023771 slugs/ft3 (1.225 kg/m3), 518.67◦R (288.15 K), and 722.1813 lb/ft2

(34578.04 Pa) respectively, while R was set to 585.7438
ft·lbf

slug·◦R
(R = 97.951 N ·m

Kg·K
).

LCO for the Goland+, clean-wing was computed on all five grids discussed

above, at 600 ft/sec (182.88 m/sec), Mach 0.92. The three coarsest inviscid grids

correctly captured the LCO. This was initially surprising, because the coarse grid

did not accurately capture the pressure distribution on the wing at the leading and

trailing edges, nor did it accurately define the shock location due to the large size

of the cells. However, because the structural grid was coarser than even the coarse

aerodynamic grid, all of the aerodynamic grids produced a similar force distribu-

tion when transferred to the structural grid. The amplitudes of the LCO and the

modal contributions were approximately the same regardless of the grid. The only

significant variation in the LCO due to grid refinement was in the frequency. The

frequency was 3.37 Hz for the coarse grid, 3.31 Hz for the baseline grid, and 3.27 Hz

for the medium grid. The computation time varied greatly. It took approximately

5.5 hours to produce one second of data using six 2.2 GHz opteron processors on the

coarse grid, 15.6 hours on the baseline grid, and 21 hours on the medium grid.

The fine grid produced only 6.584 seconds of data before the fluid solver failed.

This failure was due to the twist producing high angles-of-attack at the wing tip, and

the solver’s inability to handle the adverse pressure gradient that appeared behind

the leading edge. This failure was in the same location that the steady, viscous

runs showed a very small separation bubble. The coarse grids averaged out this

small problem area so that the solver did not crash. When the solver failed, CL was

oscillating at a frequency of 3.15 Hz and the frequency was increasing. With this

grid, it took 27.3 hours to produce one second of data using six 2.2 GHz opteron

processors.
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The viscous grid using the Spalart-Allmaras turbulence model was run for less

than 3 seconds because of very large computation times. With this grid, it was

taking seven days to produce one second of data using sixteen 2.2 GHz opteron pro-

cessors. As the amplitudes continued to grow and the motion continued to increase,

the computational time required for each time step was increasing. Therefore, this

aeroelastic analysis tool was found to be inadequate for viscous calculations.
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Appendix D. Goland+ with NACA 65-004 Airfoil

To determine whether the airfoil affects the flow of energy between the fluid and the

structure, or whether the flow of energy was independent of the airfoil, the Goland+,

biconvex airfoil was replaced with a NACA 65-004 airfoil. Since the airfoil affects

the shock strength, location, and movement, it was expected to affect the amplitude

of the LCO. With the biconvex airfoil, LCO was established by 6.4 seconds with a

mode 1 amplitude of ±8.8 as discussed above. With the same initial perturbation

and flow conditions, the NACA 65-004 airfoil mode 1 amplitude only realized ±1.4

after 15 seconds (Figure D.1). This demonstrated that the airfoil was critical to the

transfer of energy between the structure and fluid. A large initial velocity pertur-

bation was then given to the NACA 65-004 configuration (Figure D.2). The large

perturbation quickly accelerated the motion past the LCO conditions seen with the

bi-convex wing. Mode 1 and mode 2 were still in phase as they were for the bi-

convex wing. This led to the same trailing-edge and leading-edge shock structure

(Figure D.3) as previously seen. At 6.365 seconds the inviscid fluid solver crashed

due to the large angle-of-attack. Based on the shock structure and mode coupling,

it was hypothesized that it would settle into LCO, although at an angle-of-attack

higher than the inviscid fluid solver was capable of simulating. Regardless, this case

demonstrated the importance of the airfoil on the LCO solution. The airfoil dic-

tated how fast the oscillations grew and the final LCO amplitudes. The coupling

of the modes and the corresponding shock motion determined whether a damping

mechanism was present that could lead to LCO.
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Figure D.3 Clean Wing with NACA 65-004 Airfoil Pressure Contours
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Appendix E. LCO at Positive Angle-of-Attack

To determine whether the angle-of-attack of the wing affects the flow of energy be-

tween the fluid and the structure, the root angle-of-attack was changed from 0.0 de-

grees to 2.0 degrees. Changing the angle-of-attack changed the static aeroelastic

solution, causing a displacement of the static values about which the modes and

CL (Figure E.1) oscillated. The wing oscillated about a CL of 0.1676 instead of 0.0

and about a tip angle-of-attack of 1.36 degrees instead of 0.0 degrees. This new

neutral point was the new static aeroelastic solution for the wing at 2.0 degrees

angle-of-attack. The pattern of the energy flow between the fluid and structure was

unaffected.
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Appendix F. F–16 Results

Air Force SEEK EAGLE Office used a block 40 F–16C for LCO testing [15]. The

F–16 has a cropped delta wing, blended with the fuselage. It has a wingspan of

32 ft, 8 in (9.9568 m) and a NACA 64A-204 airfoil. The wing aspect ratio is 3.2 and

the leading-edge sweep is 40 degrees [15]. The configuration shown in Figure F.1

exhibited LCO in level flight test conditions ranging from Mach 0.70 to Mach 0.95

at 2,000 ft, 5,000 ft, and 10,000 ft pressure altitude [15].

An attempt to compute the F–16 LCO state with the aeroelastic program was

made. The store configuration and mass properties used by the modal structural

model obtained from Denegri [15], are shown in Tables F.1 and F.2. The modal

structural model consisted of 26 modes which ranged in frequency from 5.21 Hz to

24.33 Hz [15]. The first six modes are shown in Figure F.2. An inviscid grid made up

of 1,189,805 tetrahedral cells was created for this problem. The under-wing stores

and the fuselage were not modelled in the aerodynamic grid, but the tip launcher

was modelled. The wing was projected to the centerline through the area located by

the fuselage, therefore, the total span was correct (Figure F.3). Denegri [15] found

that the dominant LCO modes were anti-symmetric, therefore, both sides of the

F–16 wing were modelled. The 2,000 ft pressure altitude, Mach 0.90 test condition

was simulated. Acceleration data for the aerodynamic grid point corresponding to

the forward, vertical accelerometer was collected. This was compared to the flight-

Figure F.1 F–16C Store Configuration
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Table F.1 F–16 Store Configuration and Attachment Reference Points

Station* Location x (in.) y (in.) z (in.) Store Suspension equipment

1 Wingtip 380.46 180.00 92.00 None LAU-129/A launcher

2 Underwing 371.56 157.00 91.35 AIM-9P missile LAU-129/A launcher

3 Underwing 349.67 120.00 90.72 Air-Ground missile Launcher/pylon

4 Underwing 316.87 71.00 90.02 Empty 370 gal. tank Fuel Pylon

* Left wing station loading. For the flight test, the right wing was configured as a mirror image
of the left wing.

Table F.2 F–16 Store Mass Properties

Store Weight Center of gravity* Moments of inertia
(slug-ft.2)

(lb.) x(in.) y(in.) z(in.) Roll Pitch Yaw

LAU-129/A wingtip launcher 84.9 -15.20 0.00 -0,01 – 13.73 13.70

AIM-9P missile, LAU-129/A un-
derwing launcher, and missile py-
lon

276.3 -14.65 0.01 -13.30 1.31 68.63 67.77

Air-ground missile, launcher, and
weapon pylon

898.7 -2.27 0.02 -20.72 19.72 134.74 116.95

370 gallon fuel tank (empty) and
pylon

470.5 -1.85 -0.18 -10.00 – 197.93 187.64

* Positive values are aft, outboard, or above the store attachment reference point x-y-z locations
(see Table F.1).

test results shown in Figure F.4 [15]. This figure shows that the wing-tip response

amplitude was about ±3g or 1, 158 in/sec2 (29.42 m/s2) for this test condition.

With an initial modal displacement perturbation of 0.02 to mode 2, after 11 sec-

onds, the wing-tip response amplitude was around 180 in/sec2 (4.57 m/s2), but still

growing. Since the computation time for this grid was over 50 hours for one second

of data on sixteen 2.2 GHz Opteron processors, it would take too long to determine

whether LCO would develop using this small initial perturbation. The accelerations

had a frequency of 8.4 Hz, which was close to that reported by Denegri [15].

A large, initial-velocity perturbation of 10.0 was given to mode 4 to determine

if run times could be reduced. The large initial perturbation kicked the wing to
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(a) Mode 1 (5.212726 Hz) (b) Mode 2 (8.167878 Hz) (c) Mode 3 (8.466704 Hz)

(d) Mode 4 (8.671919 Hz) (e) Mode 5 (10.56468 Hz) (f) Mode 6 (10.89219 Hz)

Figure F.2 Mode Shapes for F–16C

Figure F.3 F–16C Inviscid Grid
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the acceleration levels seen in flight test, but did not result in LCO. The amplitudes

continued to grow resulting in divergent flutter (Figure F.5). Modes 2 and 4 were the

dominant modes. Mode 2 was the first anti-symmetric bending mode and mode 4

was the first anti-symmetric twisting mode. These two modes were 107 degrees

out of phase and did not couple into a single degree-of-freedom flutter mode as did

the Goland+ wing (Figure F.6). These results imply that the structural model, as

implemented, did not correctly or completely model the structure or that there is a

different mechanism responsible for LCO in the F–16 than that found in the Goland+

wing. The different mechanism could be boundary-layer/shock-wave interaction or

shock-induced separation on the wing, both of which require viscous modelling.

Additional testing is required to determine whether LCO can be obtained with

this simplified wing or whether additional grid details, such as the fuselage and

underwing stores, need to be included. Viscous modelling may also be necessary to

duplicate the flight test results. Other researchers are also trying to simulate this

flight-test scenario [14, 54, 55], but to date, no one has been able to completely

duplicate the flight-test results.

F-4



Time

A
cc

el
er

at
io

n
(in

/s
2 )

0 5 10 15

-10000

-5000

0

5000

10000

F-16 Amplitude History

Figure F.5 F–16 Wing-Tip Acceleration (Large Initial Condition)

Time

A
m

pl
itu

de

0 5 10 15

-4

-3

-2

-1

0

1

2

3

4

Mode 2
Mode 4

F-16 Amplitude History

Figure F.6 F–16 Modal Amplitudes

F-5



References

1. ZAERO version 5.2 Theoretical Manual. ZONA Technology, Inc., Scottsdale,
AZ, 13 edition, 2001.

2. FLUENT 6.1 User’s Guide. FLUENT, Inc., Lebanon, NH, 2003.

3. Batina, J.T., D.A. Seidel, S.R. Bland, and R.M. Bennett. “Unsteady Transonic
Flow Calculations for Realistic Aircraft Configurations”. AIAA-87-0850, 1987.

4. Belk, Davy M. and Raymond C. Maple. “Automated Assembly of Structured
Grids for Moving Body Problems”. AIAA-95-1680-CP, 1995.

5. Bendiksen, O.O. “Transonic Limit Cycle Flutter/LCO”. AIAA-2004-1694, 45th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-
als Conference, Palm Springs, CA, April 19-22, 2004.

6. Beran, P.S., N.S. Khot, F.E. Eastep, R.D. Snyder, and J.V. Zweber. “Numer-
ical Analysis of Store-Induced Limit-Cycle Oscillation”. Journal of Aircraft,
41(6):1315–1326, November-December 2004.

7. Beran, P.S., N.S. Khot, F.E. Eastep, R.D. Snyder, J.V. Zweber, L.J. Huttsell,
and J.N. Scott. “The Dependence of Store-Induced Limit-Cycle Oscillation Pre-
dictions on Modelling Fidelity”. Paper #44, RTO Applied Vehicle Technology
Panel Symposium on Reduction of Military Vehicle Acquisition Time and Cost
Through Advanced Modelling and Virtual Product Simulation, Paris, France,
April 22-25, 2002.

8. Bunton, Robert W. and Charles M. Denegri Jr. “Limit Cycle Oscillation Char-
acteristics of Fighter Aircraft”. Journal of Aircraft, 37(5):916–918, September-
October 2000.

9. Cai, J., F. Liu, and H.M. Tsai. “Static Aeroelastic Computation with a Cou-
pled CFD and CSD Method”. AIAA-2001-0717, 39th AIAA Aerospace Sciences
Meeting & Exhibit, Reno, NV, January 8-11, 2001.

10. Chen, P.C., E. Sulaeman, D.D. Liu, and C.M. Denegri Jr. “Influence of Exter-
nal Store Aerodynamics on Flutter/LCO of a Fighter Aircraft”. AIAA-2002-
1410, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Denver, CO, April 22-25, 2002.

11. Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, MA, 2 edition, 2001.

12. Denegri, Charles M., James A. Dubben, and Daniel L. Maxwell. “In-Flight
Wing Deformation Characteristics During Limit-Cycle Oscillations”. Journal of
Aircraft, 42(2):500–508, March-April 2005.

REF-1



13. Denegri, Charles M. Jr. “Limit Cycle Oscillation Flight Test Results of a Fighter
with External Stores”. AIAA-2000-1394, 41st AIAA/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, Atlanta, GA, April 3-6,
2000.

14. Denegri, Charles M. Jr. and James A. Dubben. “F-16 Limit Cycle Oscillation
Analysis Using Transonic Small-disturbance Theory”. AIAA-2005-2296, 46th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Austin, TX, April 18-21, 2005.

15. Denegri, Charles M. Jr. and James A. Dubben. “In-Flight Wing Deforma-
tion Characteristics During Limit Cycle Oscillations”. AIAA-2003-1426, 44th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Norfolk, VA, April 7-10, 2003.

16. Dowell, E., J. Edwards, and T.W. Strganac. “Nonlinear Aeroelasticity”. AIAA-
2003-1816, 44th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, Norfolk, VA, April 7-10, 2003.

17. Dowell, Earl H. and Deman Tang. “Nonlinear Aeroelasticity and Unsteady
Aerodynamics”. AIAA Journal, 40(9):1697–1707, September 2002.

18. Duchon, Jean. “Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev
Spaces”. W. Schempp and K. Zeller (editors), Constructive Theory of Functions
of Several Variables: Proceedings of a Conference Held at Oberwolfach, April

25-May 1, 1976, 85–100. Springer-Verlag, Berlin, 1977.

19. Eastep, F.E. and J. J. Olsen. “Transonic Flutter Analysis of a Rectangular Wing
with Conventional Airfoil Sections”. AIAA Journal, 18(10):1159–1164, October
1980.

20. Farhat, C., M. Lesoinne, P.S. Chen, and S. Lanteri. “Parallel Heterogeneous
Algorithms for the Solution of Three-Dimensional Transient Coupled Aeroelastic
Problems”. AIAA-95-1290-CP, 1995.

21. Farhat, C., K. Pierson, and C Degand. “CFD Based Simulation of the Unsteady
Aeroelastic Response of a Maneuvering Vehicle”. AIAA-2000-0899, 38th AIAA
Aerospace Sciences Meeting & Exhibit, Reno, NV, January 10-13, 2000.

22. Farhat, Charbel, Philippe Geuzaine, Gregory Brown, and Chuck Har-
ris. “Nonlinear Flutter Analysis of an F-16 in Stabilized, Accelerated,
and Increased Angle of Attack Flight Conditions”. AIAA-2002-1490, 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference, Denver, CO, April 22-25, 2002.

23. Geuzaine, Philippe, Gregory Brown, and Charbel Farhat. “Three-Field-Based
Nonlinear Aeroelastic Simulation Technology: Status and Application to the
Flutter Analysis of an F-16 Configuration”. AIAA-2002-0870, 40th AIAA
Aerospace Sciences Meeting & Exhibit, Reno, NV, January 14-17, 2002.

REF-2



24. Geuzaine, Philippe, Gregory Brown, Chuck Harris, and Charbel Farhat. “Aeroe-
lastic Dynamic Analysis of a Full F-16 Configuration for Various Flight Condi-
tions”. Journal of Aircraft, 41(3):363–371, March 2003.

25. Goland, Martin. “The Flutter of a Uniform Cantilever Wing”. Journal of Applied
Mechanics, 12(4):197–208, December 1945.

26. Gordnier, Raymond E. “Computation of Limit-Cycle Oscillations of a Delta
Wing”. Journal of Aircraft, 40(6):1206–1208, November-December 2003.

27. Gordnier, Raymond E. and Reid B. Melville. “Transonic Flutter Simulations
Using an Implicit Aeroelastic Solver”. Journal of Aircraft, 37(5):872–879,
September-October 2000.

28. Harder, Robert L. and Robert N. Desmarais. “Interpolation Using Surface
Splines”. Journal of Aircraft, 9(2):189–191, February 1972.

29. Hodges, Dewey H. and G. Alvin Pierce. Introduction to Structural Dynamics

and Aeroelasticity. Cambridge University Press, New York, NY, 2002.

30. Hughes, Thomas J. R. The Finite Element Method – Linear Static and Dynamic

Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.

31. Huttsell, L., D. Schuster, J. Volk, J. Giesing, and M. Love. “Evaluation of
Computational Aeroelasticity Codes for Loads and Flutter”. AIAA-2001-0569,
39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, January 8-11,
2001.

32. Janardhan, Srinivasan, Ramana V. Grandhi, Frank Eastep, and Brian Sanders.
“Parametric Studies of Transonic Aeroelastic Effects of an Aircraft Wing/Tip
Store”. Journal of Aircraft, 42(1):253–263, January-February 2005.

33. Kim, D.H., Y.M. Park, I. Lee, and O.J. Kwon. “Nonlinear Aeroelastic Com-
putation of Wings with Pylon/Finned-Store Using Parallel Unstructured Eu-
ler Solver”. AIAA-2002-1289, 43rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Denver, CO, April 22-25, 2002.

34. Kim, Dong-Hyun and In Lee. “Transonic and Supersonic Flutter Charac-
teristics of a Wing-Box Model with Tip Stores”. AIAA-2001-1464, 42nd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference, Seattle, WA, April 16-19, 2001.

35. Kim, Dong-Hyun, Young-Min Park, In Lee, and Oh Joon Kwon. “Nonlinear
Aeroelastic Computations of a Wing/Pylon/Finned-Store Using Parallel Com-
puting”. AIAA Journal, 40(1):53–62, January 2005.

36. Kolonay, R. M. Unsteady Aeroelastic Optimization in the Transonic Regime.
Ph.D. thesis, Purdue University, Dept. of Aeronautics and Astronautics,
Lafayette, IN, 1996.

REF-3



37. Kwon, Hyuk J., Soo H. Park, Jae H. Lee, Yoonsik Kim, In Lee, and Jang H.
Kwon. “Transonic Wing Flutter Simulation Using Navier-Stokes and k − ω
Turbulent Model”. AIAA-2005-2294, 46th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Austin, TX, April 18-21, 2005.

38. Lee-Rausch, Elizabeth M. and John T. Batina. “Calculation of AGARD 445.6
Flutter Using Navier-Stokes Aerodynamics”. AIAA-93-3476-CP, 1993.

39. Lijewski, Lawrence E. “Transonic Euler Solutions of a Wing-Pylon-Finned Body
Configuration Using Blocked and Overlapping Grid Schemes”. AIAA-91-2854-
CP, 1991.

40. Liu, F., J. Cai, Y. Zhu, A.S.F. Wong, and H.M. Tsai. “Calculation of Wing Flut-
ter by a Coupled CFD-CSD Method”. AIAA-2000-0907, 38th AIAA Aerospace
Sciences Meeting & Exhibit, Reno, NV, January 10-13, 2000.

41. Meijer, J.J. and A. M. Cunningham Jr. “Development of a Method to Predict
Transonic Limit Cycle Oscillation Characteristics of Fighter Aircraft”. AGARD
Conference Proceedings 507 – Transonic Unsteady Aerodynamics and Aeroelas-

ticity, AGARD-CP-507, 23–1 thru 23–21. AGARD, 1992.

42. Melville, Reid. “Nonlinear Mechanisms of Aeroelastic Instability for the F-16”.
AIAA-2002-0871, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV,
January 14-17, 2002.

43. Melville, Reid. “Nonlinear Simulation of F-16 Aeroelastic Instability”. AIAA-
2001-0570, 39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan-
uary 8-11, 2001.

44. Melville, Reid. “Aeroelastic Instability of Tactical Aircraft in Nonlinear Flow
Regimes”. AIAA-2002-2970, 32nd AIAA Fluid Dynamics Conference, St. Louis,
MO, June 24-26, 2002.

45. Melville, Reid B., Scott A. Morton, and Donald P. Rizzetta. “Implementation
of a Fully-Implicit, Aeroelastic Navier-Stokes Solver”. AIAA-97-2039-CP, 1997.

46. Morton, Scott A., Reid B. Melville, and Miguel R. Visbal. “Accuracy and Cou-
pling Issues of Aeroelastic Navier-Stokes Solutions on Deforming Meshes”. Jour-
nal of Aircraft, 35(5):798–805, September-October 1998.

47. Parker, G.H., R.C. Maple, and P.S. Beran. “The Role of Viscos-
ity in Store-Induced Limit-Cycle Oscillation”. AIAA-2005-1916, 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference, Austin, TX, April 18-21, 2005.

48. Parker, G.H., R.C. Maple, and P.S. Beran. “The Role of Store Aerodynamics
in Store-Induced Limit-Cycle Oscillation”. Proceeedings of International Forum
of Aeroelasticity and Structural Dynamics, Munich, Germany, June 28 - July 2,
2005.

REF-4



49. Sadeghi, M., S. Yang, F. Liu, and H.M. Tsai. “Parallel Computation of Wing
Flutter with a Coupled Navier-Stokes/CSD Method”. AIAA-2003-1347, 41st
AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, January 6-9, 2003.

50. Smith, Marilyn J., Dewey H. Hodges, and Carlos E. S. Cesnik. An Evaluation of
Computational Algorithms to Interface Between CFD and CSD Methodologies.
Technical Report WL-TR-96-3055, Wright Laboratory, Wright-Patterson AFB,
OH, 1995.

51. Snyder, R.D., J.N. Scot, N.S. Khot, P.S. Beran, and J.V. Zweber. “Predic-
tions of Store-Induced Limit-Cycle Oscillations Using Euler and Navier-Stokes
Fluid Dynamics”. AIAA-2003-1727, 44th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Norfolk, VA, April 7-10, 2003.

52. Tang, L., R.E. Bartels, P.C. Chen, and D.D. Liu. “Simulation of Transonic
Limit Cycle Oscillations using a CFD Time Marching Method”. AIAA-2001-
1292, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Seattle, WA, April 16-19, 2001.

53. Terashima, H. and K. Fujii. “Effects of Number of Stores on the Transonic
Flutter Characteristics of a Delta Wing Configuration”. AIAA-2004-2234, 34th
AIAA Fluid Dynamics Conference, Portland, OR, June 28-July 1, 2004.

54. Thomas, J.P., E.H. Dowell, K.C. Hall, and C.M. Denegri Jr. “Fur-
ther Investigation of Modelling Limit Cycle Oscillation Behavior of the F-
16 Fighter Using a Harmonic Balance Approach”. AIAA-2005-1917, 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference, Austin, TX, April 18-21, 2005.

55. Thomas, J.P., E.H. Dowell, K.C. Hall, and C.M. Denegri Jr. “Modelling Limit
Cycle Oscillation Behavior of the F-16 Fighter Using a Harmonic Balance Ap-
proach”. AIAA-2004-1696, 45th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Palm Springs, CA, April 19-22,
2004.

56. Tijdeman, H. and R. Seebass. “Transonic Flow Past Oscillating Airfoils”. Annual
Review of Fluid Mechanics, 12:181–222, 1980.

57. Yates, E. Carson Jr. AGARD Standard Aeroelastic Configurations for Dynamic

Response I – Wing 445.6. AGARD Report AGARD-R-765, NASA Langley
Research Center, Hampton, VA, 1988.

REF-5



Vita

Major Gregory H. Parker graduated as valedictorian from Purvis High School

in Purvis, Mississippi in 1984. He received his Bachelor of Science Degree in Aeronau-

tical Engineering from Mississippi State University in August 1988 and his Master

of Science in December 1989. While at Mississippi State, he worked at the Raspet

Flight Research Laboratory as a draftsman and later as a system engineer responsi-

ble for designing, building, installing, and testing, the aileron control system and fuel

system for an all-composite, general aviation aircraft. He also designed an instru-

mentation system and data-reduction system for a general aviation aircraft under

development for Honda Motor Company. Maj Parker was commissioned as a Second

Lieutenant in the United States Air Force on 20 December 1988.

While on active duty with the Air Force, Maj Parker served as test manager

for the MC-130H Combat Talon II in the Special Operations SPO, and as an air-

craft systems analyst in the National Air Intelligence Center, at Wright-Patterson

AFB, Ohio. As the B-2 engineering flight commander stationed at Whiteman AFB,

Missouri, Maj Parker supervised a team of engineers, analysts, and instrumentation

personnel and was directly responsible for all aspects of operational testing of the

B-2 stealth bomber. While stationed at Eglin AFB, Florida, Maj Parker served as

the AIM-120 test director where he was responsible for planning, coordinating, and

executing AMRAAM operational test. He also served as the F-15 MSIP program

manager and as the first Eglin F-15 combined-test-force (CTF) technical director

where he was responsible for budgeting, planning, and reporting on all F-15 fighter

tests.

In 2002 he was assigned to the Air Force Institute of Technology at Wright-

Patterson AFB, Ohio where he was enrolled as a student in the aeronautical engineer-

ing doctoral program. Upon graduation he will be assigned to the Multidisciplinary

Technologies Center at the Air Force Research Laboratories.

VITA-1



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–12–2005 Doctoral Dissertation Sep 2002 — Dec 2005

Dynamic Aeroelastic Analysis of Wing/Store Configurations

Parker, Gregory H., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB, OH. 45433-7765

AFIT/DS/ENY/06-06

AFRL/VASD
Attn: Dr. Philip S. Beran
2210 8th Street
WPAFB, OH. 45433-7765

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Limit-cycle oscillation, or LCO, is an aeroelastic phenomenon characterized by limited amplitude, self-sustaining
oscillations produced by fluid-structure interactions. In order to study this phenomenon, code was developed to interface
a modal structural model with a commercial computational fluid dynamics program. LCO was simulated for a
rectangular wing, referred to as the Goland+ wing. It was determined that the aerodynamic nonlinearity responsible for
LCO in the Goland+ wing was the combination of strong trailing-edge and lambda shocks which periodically appear and
disappear. This mechanism limited the flow of energy into the structure which quenched the growth of the flutter,
resulting in a steady LCO. Under-wing and tip stores were added to the Goland+ wing to determine how stores affected
limit-cycle oscillation. It was found that aerodynamic store shapes affect LCO in two offsetting ways: under-wing stores
interfere with the airflow on the lower surface of the wing which decreases LCO amplitudes, whereas, aerodynamic forces
on both under-wing and tip stores directly increase LCO amplitudes.

Aeroelasticity, Limit-Cycle, Computational Fluid Dynamics, Flutter, Limit-Cycle Oscillation, LCO, Wing/Store

Configurations, Goland+ Wing

U U U UU 124

Raymond C. Maple, Lt Col, USAF (ENY)

(937) 255–3636, ext 4577


